State of the art of thermal storage for demand-side management
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2011.12.045
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Atikol, U. & Güven, H., 2003. "Feasibility of DSM-technology transfer to developing countries," Applied Energy, Elsevier, vol. 76(1-3), pages 197-210, September.
- Arce, Pablo & Medrano, Marc & Gil, Antoni & Oró, Eduard & Cabeza, Luisa F., 2011. "Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe," Applied Energy, Elsevier, vol. 88(8), pages 2764-2774, August.
- Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
- Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
- Sheen, J.N., 2006. "Incentive pricing and economic profitability of load management program," Energy, Elsevier, vol. 31(12), pages 2193-2209.
- Tyagi, Vineet Veer & Buddhi, D., 2007. "PCM thermal storage in buildings: A state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1146-1166, August.
- Limmeechokchai, B. & Chungpaibulpatana, S., 2001. "Application of cool storage air-conditioning in the commercial sector: an integrated resource planning approach for power capacity expansion planning and emission reduction," Applied Energy, Elsevier, vol. 68(3), pages 289-300, March.
- Khan, K. H. & Rasul, M. G. & Khan, M. M. K., 2004. "Energy conservation in buildings: cogeneration and cogeneration coupled with thermal energy storage," Applied Energy, Elsevier, vol. 77(1), pages 15-34, January.
- Haeseldonckx, Dries & Peeters, Leen & Helsen, Lieve & D'haeseleer, William, 2007. "The impact of thermal storage on the operational behaviour of residential CHP facilities and the overall CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1227-1243, August.
- Yu, Yongzhen, 2010. "Policy redesign for solving the financial bottleneck in demand side management (DSM) in China," Energy Policy, Elsevier, vol. 38(10), pages 6101-6110, October.
- Levine, Mark D. & Koomey, Jonathan G. & Price, Lynn & Geller, Howard & Nadel, Steven, 1995. "Electricity end-use efficiency: Experience with technologies, markets, and policies throughout the world," Energy, Elsevier, vol. 20(1), pages 37-61.
- Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
- Bogdan, Željko & Kopjar, Damir, 2006. "Improvement of the cogeneration plant economy by using heat accumulator," Energy, Elsevier, vol. 31(13), pages 2285-2292.
- Kenisarin, Murat M., 2010. "High-temperature phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 955-970, April.
- Castell, A. & Medrano, M. & Solé, C. & Cabeza, L.F., 2010. "Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates," Renewable Energy, Elsevier, vol. 35(10), pages 2192-2199.
- Hasnain, Syed Mahmood & Alabbadi, Naif Mohammed, 2000. "Need for thermal-storage air-conditioning in Saudi Arabia," Applied Energy, Elsevier, vol. 65(1-4), pages 153-164, April.
- Baker, John, 2008. "New technology and possible advances in energy storage," Energy Policy, Elsevier, vol. 36(12), pages 4368-4373, December.
- Yohanis, Yigzaw Goshu & Mondol, Jayanta Deb, 2010. "Annual variations of temperature in a sample of UK dwellings," Applied Energy, Elsevier, vol. 87(2), pages 681-690, February.
- Didden, Marcel H. & D'haeseleer, William D., 2003. "Demand Side Management in a competitive European market: Who should be responsible for its implementation?," Energy Policy, Elsevier, vol. 31(13), pages 1307-1314, October.
- Chao, Hung-po, 2010. "Price-Responsive Demand Management for a Smart Grid World," The Electricity Journal, Elsevier, vol. 23(1), pages 7-20, January.
- Krajacic, Goran & Duic, Neven & Tsikalakis, Antonis & Zoulias, Manos & Caralis, George & Panteri, Eirini & Carvalho, Maria da Graça, 2011. "Feed-in tariffs for promotion of energy storage technologies," Energy Policy, Elsevier, vol. 39(3), pages 1410-1425, March.
- Goldman, Charles A. & Kito, Michele S., 1995. "Review of US utility demand-side bidding programs : Impacts, costs, and cost-effectiveness," Utilities Policy, Elsevier, vol. 5(1), pages 13-25, January.
- Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
- Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
- Moura, Pedro S. & de Almeida, Aníbal T., 2010. "The role of demand-side management in the grid integration of wind power," Applied Energy, Elsevier, vol. 87(8), pages 2581-2588, August.
- Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
- Al-Iriani, Mahmoud A., 2005. "Climate-related electricity demand-side management in oil-exporting countries--the case of the United Arab Emirates," Energy Policy, Elsevier, vol. 33(18), pages 2350-2360, December.
- Malik, Arif S, 1999. "Dynamic generating costs in DSM planning," Energy, Elsevier, vol. 24(1), pages 1-8.
- Han, Y.M. & Wang, R.Z. & Dai, Y.J., 2009. "Thermal stratification within the water tank," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1014-1026, June.
- Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
- Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
- Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
- Fragaki, Aikaterini & Andersen, Anders N. & Toke, David, 2008. "Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK," Energy, Elsevier, vol. 33(11), pages 1659-1670.
- Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
- Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
- Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
- Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
- Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
- Cárdenas, Bruno & León, Noel, 2013. "High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 724-737.
- Kenisarin, Murat M. & Kenisarina, Kamola M., 2012. "Form-stable phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1999-2040.
- Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
- Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
- Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
- Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C. & Mahlia, T.M.I., 2013. "Curbing global warming with phase change materials for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 23-30.
- Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
- Solé, Aran & Miró, Laia & Barreneche, Camila & Martorell, Ingrid & Cabeza, Luisa F., 2013. "Review of the T-history method to determine thermophysical properties of phase change materials (PCM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 425-436.
- Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
- Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
- Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
- Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
- Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
- Fornarelli, F. & Camporeale, S.M. & Fortunato, B. & Torresi, M. & Oresta, P. & Magliocchetti, L. & Miliozzi, A. & Santo, G., 2016. "CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants," Applied Energy, Elsevier, vol. 164(C), pages 711-722.
More about this item
Keywords
Thermal storage; Demand side management; Load shifting; Electrical load management;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:371-389. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.