IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i11p4569-4589d21447.html
   My bibliography  Save this article

Non-Intrusive Demand Monitoring and Load Identification for Energy Management Systems Based on Transient Feature Analyses

Author

Listed:
  • Hsueh-Hsien Chang

    (Department of Electronic Engineering, Jin-Wen University of Science and Technology, New Taipei 23154, Taiwan)

Abstract

Energy management systems strive to use energy resources efficiently, save energy, and reduce carbon output. This study proposes transient feature analyses of the transient response time and transient energy on the power signatures of non-intrusive demand monitoring and load identification to detect the power demand and load operation. This study uses the wavelet transform (WT) of the time-frequency domain to analyze and detect the transient physical behavior of loads during the load identification. The experimental results show the transient response time and transient energy are better than the steady-state features to improve the recognition accuracy and reduces computation requirements in non-intrusive load monitoring (NILM) systems. The discrete wavelet transform (DWT) is more suitable than short-time Fourier transform (STFT) for transient load analyses.

Suggested Citation

  • Hsueh-Hsien Chang, 2012. "Non-Intrusive Demand Monitoring and Load Identification for Energy Management Systems Based on Transient Feature Analyses," Energies, MDPI, vol. 5(11), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4569-4589:d:21447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/11/4569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/11/4569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying-Yi Hong & Jing-Han Chou, 2012. "Nonintrusive Energy Monitoring for Microgrids Using Hybrid Self-Organizing Feature-Mapping Networks," Energies, MDPI, vol. 5(7), pages 1-16, July.
    2. Chang, Hsueh-Hsien, 2011. "Genetic algorithms and non-intrusive energy management system based economic dispatch for cogeneration units," Energy, Elsevier, vol. 36(1), pages 181-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Younghoon Kwak & Jihyun Hwang & Taewon Lee, 2018. "Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building," Energies, MDPI, vol. 11(4), pages 1-22, April.
    2. Wesley Angelino de Souza & Fernando Deluno Garcia & Fernando Pinhabel Marafão & Luiz Carlos Pereira da Silva & Marcelo Godoy Simões, 2019. "Load Disaggregation Using Microscopic Power Features and Pattern Recognition," Energies, MDPI, vol. 12(14), pages 1-18, July.
    3. Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
    4. André Eugenio Lazzaretti & Douglas Paulo Bertrand Renaux & Carlos Raimundo Erig Lima & Bruna Machado Mulinari & Hellen Cristina Ancelmo & Elder Oroski & Fabiana Pöttker & Robson Ribeiro Linhares & Luc, 2020. "A Multi-Agent NILM Architecture for Event Detection and Load Classification," Energies, MDPI, vol. 13(17), pages 1-35, August.
    5. Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
    6. Anwar Ul Haq & Hans-Arno Jacobsen, 2018. "Prospects of Appliance-Level Load Monitoring in Off-the-Shelf Energy Monitors: A Technical Review," Energies, MDPI, vol. 11(1), pages 1-22, January.
    7. Bonfigli, Roberto & Principi, Emanuele & Fagiani, Marco & Severini, Marco & Squartini, Stefano & Piazza, Francesco, 2017. "Non-intrusive load monitoring by using active and reactive power in additive Factorial Hidden Markov Models," Applied Energy, Elsevier, vol. 208(C), pages 1590-1607.
    8. Mingzhe Zou & Shuyang Zhu & Jiacheng Gu & Lidija M. Korunovic & Sasa Z. Djokic, 2021. "Heating and Lighting Load Disaggregation Using Frequency Components and Convolutional Bidirectional Long Short-Term Memory Method," Energies, MDPI, vol. 14(16), pages 1-24, August.
    9. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    10. Wang, Gang & Li, Zhao & Luo, Zhao & Zhang, Tao & Lin, Mingliang & Li, Jiahao & Shen, Xin, 2024. "Dynamic adaptive event detection strategy based on power change-point weighting model," Applied Energy, Elsevier, vol. 361(C).
    11. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    12. Hsueh-Hsien Chang & Nguyen Viet Linh, 2017. "Statistical Feature Extraction for Fault Locations in Nonintrusive Fault Detection of Low Voltage Distribution Systems," Energies, MDPI, vol. 10(5), pages 1-20, April.
    13. Guopeng Song & Hao Chen & Bo Guo, 2014. "A Layered Fault Tree Model for Reliability Evaluation of Smart Grids," Energies, MDPI, vol. 7(8), pages 1-23, July.
    14. Esa, Nur Farahin & Abdullah, Md Pauzi & Hassan, Mohammad Yusri, 2016. "A review disaggregation method in Non-intrusive Appliance Load Monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 163-173.
    15. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    16. Paula Meehan & Conor McArdle & Stephen Daniels, 2014. "An Efficient, Scalable Time-Frequency Method for Tracking Energy Usage of Domestic Appliances Using a Two-Step Classification Algorithm," Energies, MDPI, vol. 7(11), pages 1-26, October.
    17. Soon-Ryul Nam & Sang-Hee Kang & Joo-Ho Lee & Eun-Jae Choi & Seon-Ju Ahn & Joon-Ho Choi, 2013. "EMS-Data-Based Load Modeling to Evaluate the Effect of Conservation Voltage Reduction at a National Level," Energies, MDPI, vol. 6(8), pages 1-14, July.
    18. Lefeng Cheng & Zhiyi Zhang & Haorong Jiang & Tao Yu & Wenrui Wang & Weifeng Xu & Jinxiu Hua, 2018. "Local Energy Management and Optimization: A Novel Energy Universal Service Bus System Based on Energy Internet Technologies," Energies, MDPI, vol. 11(5), pages 1-38, May.
    19. Aggelos S. Bouhouras & Paschalis A. Gkaidatzis & Konstantinos C. Chatzisavvas & Evangelos Panagiotou & Nikolaos Poulakis & Georgios C. Christoforidis, 2017. "Load Signature Formulation for Non-Intrusive Load Monitoring Based on Current Measurements," Energies, MDPI, vol. 10(4), pages 1-21, April.
    20. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2015. "Data Mining Techniques for Detecting Household Characteristics Based on Smart Meter Data," Energies, MDPI, vol. 8(7), pages 1-21, July.
    21. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    2. Kuei-Hsiang Chao & Min-Sen Yang & Chin-Pao Hung, 2013. "Islanding Detection Method of a Photovoltaic Power Generation System Based on a CMAC Neural Network," Energies, MDPI, vol. 6(8), pages 1-18, August.
    3. Cho, Woojin & Lee, Kwan-Soo, 2014. "A simple sizing method for combined heat and power units," Energy, Elsevier, vol. 65(C), pages 123-133.
    4. Whei-Min Lin & Chung-Yuen Yang & Chia-Sheng Tu & Hsi-Shan Huang & Ming-Tang Tsai, 2019. "The Optimal Energy Dispatch of Cogeneration Systems in a Liberty Market," Energies, MDPI, vol. 12(15), pages 1-15, July.
    5. Wu, Xin & Jiao, Dian & Liang, Kaixin & Han, Xiao, 2019. "A fast online load identification algorithm based on V-I characteristics of high-frequency data under user operational constraints," Energy, Elsevier, vol. 188(C).
    6. Rastgou, Abdollah & Moshtagh, Jamal & Bahramara, Salah, 2018. "Improved harmony search algorithm for electrical distribution network expansion planning in the presence of distributed generators," Energy, Elsevier, vol. 151(C), pages 178-202.
    7. Cai, Jiejin & Li, Qiong & Li, Lixiang & Peng, Haipeng & Yang, Yixian, 2012. "A hybrid FCASO-SQP method for solving the economic dispatch problems with valve-point effects," Energy, Elsevier, vol. 38(1), pages 346-353.
    8. Hsueh-Hsien Chang & Nguyen Viet Linh, 2017. "Statistical Feature Extraction for Fault Locations in Nonintrusive Fault Detection of Low Voltage Distribution Systems," Energies, MDPI, vol. 10(5), pages 1-20, April.
    9. Luis Hernandez & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio J. Sanchez-Esguevillas & Jaime Lloret, 2013. "Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks," Energies, MDPI, vol. 6(3), pages 1-24, March.
    10. Christos-Spyridon Karavas & Konstantinos Arvanitis & George Papadakis, 2017. "A Game Theory Approach to Multi-Agent Decentralized Energy Management of Autonomous Polygeneration Microgrids," Energies, MDPI, vol. 10(11), pages 1-22, November.
    11. Aggelos S. Bouhouras & Paschalis A. Gkaidatzis & Konstantinos C. Chatzisavvas & Evangelos Panagiotou & Nikolaos Poulakis & Georgios C. Christoforidis, 2017. "Load Signature Formulation for Non-Intrusive Load Monitoring Based on Current Measurements," Energies, MDPI, vol. 10(4), pages 1-21, April.
    12. Parvizimosaed, M. & Farmani, F. & Monsef, H. & Rahimi-Kian, A., 2017. "A multi-stage Smart Energy Management System under multiple uncertainties: A data mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 178-189.
    13. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    14. de Athayde Costa e Silva, Marsil & Klein, Carlos Eduardo & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2013. "Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem," Energy, Elsevier, vol. 53(C), pages 14-21.
    15. Moradi, Mohammad H. & Hajinazari, Mehdi & Jamasb, Shahriar & Paripour, Mahmoud, 2013. "An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming," Energy, Elsevier, vol. 49(C), pages 86-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4569-4589:d:21447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.