In-depth characteristic analysis and wide range optimal operation of fuel cell using multi-model predictive control
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121226
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Bo & Lin, Fei & Zhang, Caizhi & Liao, Ruiyue & Wang, Ya-Xiong, 2020. "Design and implementation of model predictive control for an open-cathode fuel cell thermal management system," Renewable Energy, Elsevier, vol. 154(C), pages 1014-1024.
- Afra, Mehran & Nazari, Mohsen & Kayhani, Mohammad Hasan & Sharifpur, M. & Meyer, J.P., 2019. "3D experimental visualization of water flooding in proton exchange membrane fuel cells," Energy, Elsevier, vol. 175(C), pages 967-977.
- Corral-Vega, Pedro J. & García-Triviño, Pablo & Fernández-Ramírez, Luis M., 2019. "Design, modelling, control and techno-economic evaluation of a fuel cell/supercapacitors powered container crane," Energy, Elsevier, vol. 186(C).
- Koubaa, Rayhane & Bacha, Seddik & Smaoui, Mariem & krichen, Lotfi, 2020. "Robust optimization based energy management of a fuel cell/ultra-capacitor hybrid electric vehicle under uncertainty," Energy, Elsevier, vol. 200(C).
- Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
- Ozen, Dilek Nur & Timurkutluk, Bora & Altinisik, Kemal, 2016. "Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1298-1306.
- Barzegari, Mohammad M. & Alizadeh, Ebrahim & Pahnabi, Amir H., 2017. "Grey-box modeling and model predictive control for cascade-type PEMFC," Energy, Elsevier, vol. 127(C), pages 611-622.
- Lin, Rui & Wang, Hong & Zhu, Yu, 2021. "Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density," Energy, Elsevier, vol. 221(C).
- Sun, Li & Shen, Jiong & Hua, Qingsong & Lee, Kwang Y., 2018. "Data-driven oxygen excess ratio control for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 231(C), pages 866-875.
- Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.
- Kadri, Ameni & Marzougui, Hajer & Aouiti, Abdelkrim & Bacha, Faouzi, 2020. "Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system," Energy, Elsevier, vol. 192(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
- Zhang, Xin & Zhang, Chunlei & Zhang, Zhijin & Gao, Sen & Li, He, 2024. "Coordinated management of oxygen excess ratio and cathode pressure for PEMFC based on synthesis variable-gain robust predictive control," Applied Energy, Elsevier, vol. 367(C).
- Liu, Haoran & Yu, Jiaqi & Wang, Ruzhu, 2022. "Model predictive control of portable electronic devices under skin temperature constraints," Energy, Elsevier, vol. 260(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Jian & Li, Xianguo & Shum, Chris & McPhee, John, 2023. "Control-oriented computational fuel cell dynamics modeling – Model order reduction vs. computational speed," Energy, Elsevier, vol. 266(C).
- Zhao, Junjie & Tu, Zhengkai & Chan, Siew Hwa, 2022. "In-situ measurement of humidity distribution and its effect on the performance of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PD).
- Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
- Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
- Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
- Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
- Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
- Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Xie, Nan & Ren, Jingzheng & Sun, Yi & Xiao, Zhenyu & Lei, Kun & Yang, Sheng, 2022. "Thermodynamic and exergoeconomic analyses of a vehicular fuel cell power system with waste heat recovery for cabin heating and reactants preheating," Energy, Elsevier, vol. 247(C).
- Wang, Ya-Xiong & Chen, Quan & Zhang, Jin & He, Hongwen, 2021. "Real-time power optimization for an air-coolant proton exchange membrane fuel cell based on active temperature control," Energy, Elsevier, vol. 220(C).
- Gong, Zhichao & Wang, Bowen & Xu, Yifan & Ni, Meng & Gao, Qingchen & Hou, Zhongjun & Cai, Jun & Gu, Xin & Yuan, Xinjie & Jiao, Kui, 2022. "Adaptive optimization strategy of air supply for automotive polymer electrolyte membrane fuel cell in life cycle," Applied Energy, Elsevier, vol. 325(C).
- Xiao, Fei & Chen, Tao & Gan, Zhongyu & Zhang, Ruixuan, 2023. "The influence of external operating conditions on membrane drying faults of proton-exchange membrane fuel cells," Energy, Elsevier, vol. 285(C).
- Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
- Kim, Kyunghyun & Kim, Jaeyeon & Choi, Heesoo & Kwon, Obeen & Jang, Yujae & Ryu, Sangbong & Lee, Heeyun & Shim, Kyuhwan & Park, Taehyun & Cha, Suk Won, 2023. "Pre-diagnosis of flooding and drying in proton exchange membrane fuel cells by bagging ensemble deep learning models using long short-term memory and convolutional neural networks," Energy, Elsevier, vol. 266(C).
- Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
- Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
- Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
- Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
- Sun, Li & Li, Guanru & Hua, Q.S. & Jin, Yuhui, 2020. "A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control," Renewable Energy, Elsevier, vol. 147(P1), pages 1642-1652.
- Yuxiao Qin & Guodong Zhao & Qingsong Hua & Li Sun & Soumyadeep Nag, 2019. "Multiobjective Genetic Algorithm-Based Optimization of PID Controller Parameters for Fuel Cell Voltage and Fuel Utilization," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
- Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
More about this item
Keywords
Proton exchange membrane fuel cell (PEMFC); Multivariable model predictive control; Multi-model predictive control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014742. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.