IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp347-355.html
   My bibliography  Save this article

Risk assessment of wind turbines: Transition from pure mechanistic paradigm to modern complexity paradigm

Author

Listed:
  • Ashrafi, Maryam
  • Davoudpour, Hamid
  • Khodakarami, Vahid

Abstract

Many technological systems that are composed of technical parts embedded in human, organizational, and environmental contexts can be categorized as complex systems. They have various interactions and a nonlinear relationship between their components. They are also open to their environment and make exchanges with it.

Suggested Citation

  • Ashrafi, Maryam & Davoudpour, Hamid & Khodakarami, Vahid, 2015. "Risk assessment of wind turbines: Transition from pure mechanistic paradigm to modern complexity paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 347-355.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:347-355
    DOI: 10.1016/j.rser.2015.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211500581X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohaghegh, Zahra & Kazemi, Reza & Mosleh, Ali, 2009. "Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 1000-1018.
    2. Sinha, Y. & Steel, J.A., 2015. "A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 735-742.
    3. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    4. Wen, Jiang & Zheng, Yan & Donghan, Feng, 2009. "A review on reliability assessment for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2485-2494, December.
    5. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    6. Mahmood Shafiee & Fateme Dinmohammadi, 2014. "An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore," Energies, MDPI, vol. 7(2), pages 1-24, February.
    7. Hammar, Linus & Wikström, Andreas & Molander, Sverker, 2014. "Assessing ecological risks of offshore wind power on Kattegat cod," Renewable Energy, Elsevier, vol. 66(C), pages 414-424.
    8. Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
    9. Hameed, Z. & Vatn, J. & Heggset, J., 2011. "Challenges in the reliability and maintainability data collection for offshore wind turbines," Renewable Energy, Elsevier, vol. 36(8), pages 2154-2165.
    10. Herbert, G.M. Joselin & Iniyan, S. & Goic, Ranko, 2010. "Performance, reliability and failure analysis of wind farm in a developing Country," Renewable Energy, Elsevier, vol. 35(12), pages 2739-2751.
    11. Guo, Haitao & Watson, Simon & Tavner, Peter & Xiang, Jiangping, 2009. "Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1057-1063.
    12. Davoudpour, Hamid & Rezaee, Sara & Ashrafi, Maryam, 2012. "Developing a framework for renewable technology portfolio selection: A case study at a R&D center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4291-4297.
    13. Carbone, Giuseppe & Afferrante, Luciano, 2013. "A novel probabilistic approach to assess the blade throw hazard of wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 474-481.
    14. Lin, Jin & Cheng, Lin & Chang, Yao & Zhang, Kai & Shu, Bin & Liu, Guangyi, 2014. "Reliability based power systems planning and operation with wind power integration: A review to models, algorithms and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 921-934.
    15. Arabian-Hoseynabadi, H. & Oraee, H. & Tavner, P.J., 2010. "Wind turbine productivity considering electrical subassembly reliability," Renewable Energy, Elsevier, vol. 35(1), pages 190-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea E. Copping & Alicia M. Gorton & Roel May & Finlay Bennet & Elise DeGeorge & Miguel Repas Goncalves & Bob Rumes, 2020. "Enabling Renewable Energy While Protecting Wildlife: An Ecological Risk-Based Approach to Wind Energy Development Using Ecosystem-Based Management Values," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    2. Qazi, Abroon & Dickson, Alex & Quigley, John & Gaudenzi, Barbara, 2018. "Supply chain risk network management: A Bayesian belief network and expected utility based approach for managing supply chain risks," International Journal of Production Economics, Elsevier, vol. 196(C), pages 24-42.
    3. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    4. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    5. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Qazi, Abroon & Quigley, John & Dickson, Alex & Ekici, Şule Önsel, 2017. "Exploring dependency based probabilistic supply chain risk measures for prioritising interdependent risks and strategies," European Journal of Operational Research, Elsevier, vol. 259(1), pages 189-204.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shenghu, 2013. "Reliability models for DFIGs considering topology change under different control strategies and components data change under adverse operation environments," Renewable Energy, Elsevier, vol. 57(C), pages 144-150.
    2. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    3. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    4. Li, He & Guedes Soares, C, 2022. "Assessment of failure rates and reliability of floating offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    6. Li, Y.F. & Valla, S. & Zio, E., 2015. "Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation," Renewable Energy, Elsevier, vol. 83(C), pages 222-233.
    7. Akwasi F. Mensah & Leonardo Dueñas-Osorio, 2012. "A Closed-Form Technique for the Reliability and Risk Assessment of Wind Turbine Systems," Energies, MDPI, vol. 5(6), pages 1-17, June.
    8. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    9. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    10. Eryilmaz, Serkan & Navarro, Jorge, 2022. "A decision theoretic framework for reliability-based optimal wind turbine selection," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    11. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    12. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    13. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    14. Eryilmaz, Serkan & Devrim, Yilser, 2019. "Theoretical derivation of wind plant power distribution with the consideration of wind turbine reliability," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 192-197.
    15. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    16. Romero, Antonio & Soua, Slim & Gan, Tat-Hean & Wang, Bin, 2018. "Condition monitoring of a wind turbine drive train based on its power dependant vibrations," Renewable Energy, Elsevier, vol. 123(C), pages 817-827.
    17. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
    18. Nguyen, Trinh Hoang & Prinz, Andreas & Friisø, Trond & Nossum, Rolf & Tyapin, Ilya, 2013. "A framework for data integration of offshore wind farms," Renewable Energy, Elsevier, vol. 60(C), pages 150-161.
    19. Bhardwaj, U. & Teixeira, A.P. & Soares, C. Guedes, 2019. "Reliability prediction of an offshore wind turbine gearbox," Renewable Energy, Elsevier, vol. 141(C), pages 693-706.
    20. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2024. "Operation and maintenance management for offshore wind farms integrating inventory control and health information," Renewable Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:347-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.