IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v66y2014icp414-424.html
   My bibliography  Save this article

Assessing ecological risks of offshore wind power on Kattegat cod

Author

Listed:
  • Hammar, Linus
  • Wikström, Andreas
  • Molander, Sverker

Abstract

Offshore wind power is expanding with particular development plans in the Baltic and the North Sea. To reassure an environmentally acceptable development, regulatory authorities need to make informed decisions even when evidence and experience are scarce. In this study Ecological Risk Assessment (ERA) has been applied on a wind farm project in Kattegat, proposed within a spawning ground for the Kattegat cod, a threatened population of Atlantic cod (Gadus morhua L.). Six stressors with potential impacts on cod and related to wind farms were investigated. Three of them – extreme noise from pile driving, noise from vessels, and disturbances due to cable-trenching – are related to the construction phase, while lubricant spills and noise from turbines together with electric fields from cables are related to the operation phase. The ecological risk was derived from the combined likelihood and magnitude of potential adverse effects from stressors to the cod population using a weight-of-evidence (WOE) ranking procedure. Available evidence was evaluated based on its reliability, and contradictory arguments were balanced against each other using evidence maps. The option of performing hazardous construction events (e.g. pile-driving) outside biologically sensitive periods was incorporated in the assessment. It was shown that the construction of the wind farm poses a high risk to cod, as defined by the ranked and combined likelihoods and magnitudes of adverse effects. However by avoiding particular construction events during the cod recruitment period ecological risks can be significantly reduced. Specifically for this case, ecological risks are reduced from high to low by avoiding pile-driving from December through June, which confirms previous indications that pile-driving is the most ecologically hazardous activity of offshore wind power development. Additional risk reduction is achieved by avoiding cable trenching from January through May. The study thus illustrates the effectiveness of time-planning for risk reduction. Importantly, the study illustrates how combined ERA and WOE methods can be valuable for handling uncertainties of environmental impacts within offshore industrial development.

Suggested Citation

  • Hammar, Linus & Wikström, Andreas & Molander, Sverker, 2014. "Assessing ecological risks of offshore wind power on Kattegat cod," Renewable Energy, Elsevier, vol. 66(C), pages 414-424.
  • Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:414-424
    DOI: 10.1016/j.renene.2013.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113007015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geißler, Gesa & Köppel, Johann & Gunther, Pamela, 2013. "Wind energy and environmental assessments – A hard look at two forerunners' approaches: Germany and the United States," Renewable Energy, Elsevier, vol. 51(C), pages 71-78.
    2. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    3. Burger, Joanna & Gordon, Caleb & Lawrence, J. & Newman, James & Forcey, Greg & Vlietstra, Lucy, 2011. "Risk evaluation for federally listed (roseate tern, piping plover) or candidate (red knot) bird species in offshore waters: A first step for managing the potential impacts of wind facility development," Renewable Energy, Elsevier, vol. 36(1), pages 338-351.
    4. Aydin, Nazli Yonca & Kentel, Elcin & Duzgun, Sebnem, 2010. "GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 364-373, January.
    5. Madariaga, A. & de Alegría, I. Martínez & Martín, J.L. & Eguía, P. & Ceballos, S., 2012. "Current facts about offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3105-3116.
    6. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    7. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    8. Eggert, Håkan & Olsson, Björn, 2009. "Valuing multi-attribute marine water quality," Marine Policy, Elsevier, vol. 33(2), pages 201-206, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaldellis, J.K. & Apostolou, D. & Kapsali, M. & Kondili, E., 2016. "Environmental and social footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 92(C), pages 543-556.
    2. Galina Chebotareva & Inna Čábelková & Wadim Strielkowski & Luboš Smutka & Anna Zielińska-Chmielewska & Stanislaw Bielski, 2023. "The Role of State in Managing the Wind Energy Projects: Risk Assessment and Justification of the Economic Efficiency," Energies, MDPI, vol. 16(12), pages 1-26, June.
    3. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    5. Victoria Gartman & Lea Bulling & Marie Dahmen & Gesa Geißler & Johann Köppel, 2016. "Mitigation Measures for Wildlife in Wind Energy Development, Consolidating the State of Knowledge — Part 1: Planning and Siting, Construction," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-45, September.
    6. Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
    7. Georgiou, Isabella & Areal, Francisco J., 2015. "Economic valuation of an offshore wind farm in Greece: The role of individual׳s base-state influences and beliefs in the value formation process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 717-724.
    8. Zhang, Yu & Zhang, Yanjun & Yu, Hai & Li, Jianming & Xie, Yangyang & Lei, Zhihong, 2020. "Geothermal resource potential assessment of Fujian Province, China, based on geographic information system (GIS) -supported models," Renewable Energy, Elsevier, vol. 153(C), pages 564-579.
    9. Ashrafi, Maryam & Davoudpour, Hamid & Khodakarami, Vahid, 2015. "Risk assessment of wind turbines: Transition from pure mechanistic paradigm to modern complexity paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 347-355.
    10. Taormina, Bastien & Bald, Juan & Want, Andrew & Thouzeau, Gérard & Lejart, Morgane & Desroy, Nicolas & Carlier, Antoine, 2018. "A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 380-391.
    11. Danovaro, Roberto & Bianchelli, Silvia & Brambilla, Paola & Brussa, Gaia & Corinaldesi, Cinzia & Del Borghi, Adriana & Dell’Anno, Antonio & Fraschetti, Simonetta & Greco, Silvestro & Grosso, Mario & N, 2024. "Making eco-sustainable floating offshore wind farms: Siting, mitigations, and compensations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    12. Neveen Hamza & Ruben Paul Borg & Liberato Camilleri & Charalampos Baniotopoulos, 2022. "Experts versus the Public: Perceptions of Siting Wind Turbines and Performance Concerns," Energies, MDPI, vol. 15(20), pages 1-25, October.
    13. Galparsoro, I. & Korta, M. & Subirana, I. & Borja, Á. & Menchaca, I. & Solaun, O. & Muxika, I. & Iglesias, G. & Bald, J., 2021. "A new framework and tool for ecological risk assessment of wave energy converters projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    2. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    3. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    4. Salo, Olli & Syri, Sanna, 2014. "What economic support is needed for Arctic offshore wind power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 343-352.
    5. Prässler, Thomas & Schaechtele, Jan, 2012. "Comparison of the financial attractiveness among prospective offshore wind parks in selected European countries," Energy Policy, Elsevier, vol. 45(C), pages 86-101.
    6. Karakosta, Charikleia & Pappas, Charalampos & Marinakis, Vangelis & Psarras, John, 2013. "Renewable energy and nuclear power towards sustainable development: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 187-197.
    7. Salcedo-Sanz, S. & Gallo-Marazuela, D. & Pastor-Sánchez, A. & Carro-Calvo, L. & Portilla-Figueras, A. & Prieto, L., 2014. "Offshore wind farm design with the Coral Reefs Optimization algorithm," Renewable Energy, Elsevier, vol. 63(C), pages 109-115.
    8. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    10. Toonen, Hilde M. & Lindeboom, Han J., 2015. "Dark green electricity comes from the sea: Capitalizing on ecological merits of offshore wind power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1023-1033.
    11. Ying Gong & Zhengbao Yang & Xiaobiao Shan & Yubiao Sun & Tao Xie & Yunlong Zi, 2019. "Capturing Flow Energy from Ocean and Wind," Energies, MDPI, vol. 12(11), pages 1-22, June.
    12. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    13. Al-Nassar, W.K. & Neelamani, S. & Al-Salem, K.A. & Al-Dashti, H.A., 2019. "Feasibility of offshore wind energy as an alternative source for the state of Kuwait," Energy, Elsevier, vol. 169(C), pages 783-796.
    14. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    15. Georgiou, Isabella & Areal, Francisco J., 2015. "Economic valuation of an offshore wind farm in Greece: The role of individual׳s base-state influences and beliefs in the value formation process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 717-724.
    16. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    17. Brzezińska-Rawa, Anna & Goździewicz-Biechońska, Justyna, 2014. "Recent developments in the wind energy sector in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 79-87.
    18. Todd Chou & Vasileios Kosmas & Michele Acciaro & Katharina Renken, 2021. "A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    19. Mahdy, Mostafa & Bahaj, AbuBakr S., 2018. "Multi criteria decision analysis for offshore wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 118(C), pages 278-289.
    20. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:414-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.