IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics0951832020305548.html
   My bibliography  Save this article

Bayesian Network Modelling for the Wind Energy Industry: An Overview

Author

Listed:
  • Adedipe, Tosin
  • Shafiee, Mahmood
  • Zio, Enrico

Abstract

Wind energy farms are moving into deeper and more remote waters to benefit from availability of more space for the installation of wind turbines as well as higher wind speed for the production of electricity. Wind farm asset managers must ensure availability of adequate power supply as well as reliability of wind turbines throughout their lifetime. The environmental conditions in deep waters often change very rapidly, and therefore the performance metrics used in different life cycle phases of a wind energy project will need to be updated on a frequent basis so as to ensure that the wind energy systems operate at the highest reliability. For this reason, there is a crucial need for the wind energy industry to adopt advanced computational tools/techniques that are capable of modelling the risk scenarios in near real-time as well as providing a prompt response to any emergency situation. Bayesian network (BN) is a popular probabilistic method that can be used for system reliability modelling and decision-making under uncertainty. This paper provides a systematic review and evaluation of existing research on the use of BN models in the wind energy sector. To conduct this literature review, all relevant databases from inception to date were searched, and a total of 70 sources (including journal publications, conference proceedings, PhD dissertations, industry reports, best practice documents and software user guides) which met the inclusion criteria were identified. Our review findings reveal that the applications of BNs in the wind energy industry are quite diverse, ranging from wind power and weather forecasting to risk management, fault diagnosis and prognosis, structural analysis, reliability assessment, and maintenance planning and updating. Furthermore, a number of case studies are presented to illustrate the applicability of BNs in practice. Although the paper details information applicable to the wind energy industry, the knowledge gained can be transferred to many other sectors.

Suggested Citation

  • Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305548
    DOI: 10.1016/j.ress.2020.107053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langseth, Helge & Nielsen, Thomas D. & Rumí, Rafael & Salmerón, Antonio, 2009. "Inference in hybrid Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1499-1509.
    2. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    3. Li, Y.F. & Valla, S. & Zio, E., 2015. "Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation," Renewable Energy, Elsevier, vol. 83(C), pages 222-233.
    4. Xiyun Yang & Guo Fu & Yanfeng Zhang & Ning Kang & Feng Gao, 2017. "A Naive Bayesian Wind Power Interval Prediction Approach Based on Rough Set Attribute Reduction and Weight Optimization," Energies, MDPI, vol. 10(11), pages 1-15, November.
    5. Jannie Sønderkær Nielsen & John Dalsgaard Sørensen, 2014. "Methods for Risk-Based Planning of O&M of Wind Turbines," Energies, MDPI, vol. 7(10), pages 1-20, October.
    6. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    7. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    8. Nielsen, Jannie Jessen & Sørensen, John Dalsgaard, 2011. "On risk-based operation and maintenance of offshore wind turbine components," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 218-229.
    9. Ding, Fangfang & Tian, Zhigang & Zhao, Fuqiong & Xu, Hao, 2018. "An integrated approach for wind turbine gearbox fatigue life prediction considering instantaneously varying load conditions," Renewable Energy, Elsevier, vol. 129(PA), pages 260-270.
    10. Sloughter, J. McLean & Gneiting, Tilmann & Raftery, Adrian E., 2010. "Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 25-35.
    11. Ashrafi, Maryam & Davoudpour, Hamid & Khodakarami, Vahid, 2015. "Risk assessment of wind turbines: Transition from pure mechanistic paradigm to modern complexity paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 347-355.
    12. Jannie S. Nielsen & John D. Sørensen, 2017. "Bayesian Estimation of Remaining Useful Life for Wind Turbine Blades," Energies, MDPI, vol. 10(5), pages 1-13, May.
    13. Blonbou, Ruddy, 2011. "Very short-term wind power forecasting with neural networks and adaptive Bayesian learning," Renewable Energy, Elsevier, vol. 36(3), pages 1118-1124.
    14. Li, Gong & Shi, Jing, 2010. "Application of Bayesian model averaging in modeling long-term wind speed distributions," Renewable Energy, Elsevier, vol. 35(6), pages 1192-1202.
    15. John D. Sørensen & Henrik S. Toft, 2010. "Probabilistic Design of Wind Turbines," Energies, MDPI, vol. 3(2), pages 1-17, February.
    16. Kaikai Pan & Zheng Qian & Niya Chen, 2015. "Probabilistic Short-Term Wind Power Forecasting Using Sparse Bayesian Learning and NWP," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, July.
    17. de Bessa, Iury Valente & Palhares, Reinaldo Martinez & D'Angelo, Marcos Flávio Silveira Vasconcelos & Chaves Filho, João Edgar, 2016. "Data-driven fault detection and isolation scheme for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 87(P1), pages 634-645.
    18. Mahmood Shafiee & Ashraf Labib & Jhareswar Maiti & Andrew Starr, 2019. "Maintenance strategy selection for multi-component systems using a combined analytic network process and cost-risk criticality model," Journal of Risk and Reliability, , vol. 233(2), pages 89-104, April.
    19. Borunda, Mónica & Jaramillo, O.A. & Reyes, Alberto & Ibargüengoytia, Pablo H., 2016. "Bayesian networks in renewable energy systems: A bibliographical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 32-45.
    20. Wang, Yun & Wang, Haibo & Srinivasan, Dipti & Hu, Qinghua, 2019. "Robust functional regression for wind speed forecasting based on Sparse Bayesian learning," Renewable Energy, Elsevier, vol. 132(C), pages 43-60.
    21. Carlos Otero-Casal & Platon Patlakas & Miguel A. Prósper & George Galanis & Gonzalo Miguez-Macho, 2019. "Development of a High-Resolution Wind Forecast System Based on the WRF Model and a Hybrid Kalman-Bayesian Filter," Energies, MDPI, vol. 12(16), pages 1-19, August.
    22. Li, Chenzhao & Mahadevan, Sankaran, 2018. "Efficient approximate inference in Bayesian networks with continuous variables," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 269-280.
    23. Song, Zhe & Zhang, Zijun & Jiang, Yu & Zhu, Jin, 2018. "Wind turbine health state monitoring based on a Bayesian data-driven approach," Renewable Energy, Elsevier, vol. 125(C), pages 172-181.
    24. Maria Martinez-Luengo & Mahmood Shafiee, 2019. "Guidelines and Cost-Benefit Analysis of the Structural Health Monitoring Implementation in Offshore Wind Turbine Support Structures," Energies, MDPI, vol. 12(6), pages 1-26, March.
    25. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    26. Jinkyoo Park & Soon-Duck Kwon & Kincho Law, 2017. "A Data-Driven, Cooperative Approach for Wind Farm Control: A Wind Tunnel Experimentation," Energies, MDPI, vol. 10(7), pages 1-17, June.
    27. Moghaddass, Ramin & Sheng, Shuangwen, 2019. "An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework," Applied Energy, Elsevier, vol. 240(C), pages 561-582.
    28. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    29. Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
    30. Magdi Sadek Mahmoud & Mojeed O. Oyedeji, 2018. "Continuous-time multi-model predictive control of variable-speed variable-pitch wind turbines," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(11), pages 2442-2453, August.
    31. Compare, M. & Baraldi, P. & Bani, I. & Zio, E. & Mc Donnell, D., 2017. "Development of a Bayesian multi-state degradation model for up-to-date reliability estimations of working industrial components," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 25-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    2. Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
    3. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    5. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    6. Juan Izquierdo & Adolfo Crespo Márquez & Jone Uribetxebarria & Asier Erguido, 2019. "Framework for Managing Maintenance of Wind Farms Based on a Clustering Approach and Dynamic Opportunistic Maintenance," Energies, MDPI, vol. 12(11), pages 1-17, May.
    7. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    9. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez & Víctor Alonso-Gómez, 2019. "Maintenance Models Applied to Wind Turbines. A Comprehensive Overview," Energies, MDPI, vol. 12(2), pages 1-41, January.
    10. McMorland, Jade & Flannigan, Callum & Carroll, James & Collu, Maurizio & McMillan, David & Leithead, William & Coraddu, Andrea, 2022. "A review of operations and maintenance modelling with considerations for novel wind turbine concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    12. Dawid Augustyn & Martin D. Ulriksen & John D. Sørensen, 2021. "Reliability Updating of Offshore Wind Substructures by Use of Digital Twin Information," Energies, MDPI, vol. 14(18), pages 1-23, September.
    13. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2020. "Risk-based maintenance planning of offshore wind turbine farms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    14. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    15. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    16. de N Santos, Francisco & D’Antuono, Pietro & Robbelein, Koen & Noppe, Nymfa & Weijtjens, Wout & Devriendt, Christof, 2023. "Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks," Renewable Energy, Elsevier, vol. 205(C), pages 461-474.
    17. Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
    18. Jyh-Cherng Gu & Chun-Hung Liu & Kai-Ying Chou & Ming-Ta Yang, 2019. "Research on CBM of the Intelligent Substation SCADA System," Energies, MDPI, vol. 12(20), pages 1-22, October.
    19. Wu, Qiang & Zheng, Hongling & Guo, Xiaozhu & Liu, Guangqiang, 2022. "Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks," Renewable Energy, Elsevier, vol. 199(C), pages 977-992.
    20. Wu, Bing & Tang, Yuheng & Yan, Xinping & Guedes Soares, Carlos, 2021. "Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.