IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v43y2015icp1399-1414.html
   My bibliography  Save this article

Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties

Author

Listed:
  • Cabeza, Luisa F.
  • Barreneche, Camila
  • Martorell, Ingrid
  • Miró, Laia
  • Sari-Bey, Sana
  • Fois, Magali
  • Paksoy, Halime O.
  • Sahan, Nurten
  • Weber, Robert
  • Constantinescu, Mariaella
  • Anghel, Elena Maria
  • Malikova, Marta
  • Krupa, Igor
  • Delgado, Mónica
  • Dolado, Pablo
  • Furmanski, Piotr
  • Jaworski, Maciej
  • Haussmann, Thomas
  • Gschwander, Stefan
  • Fernández, A. Inés

Abstract

The use of thermal energy storage by phase change materials (PCM) is increasing in interest for building applications. For the deployment of the technology, appropriate characterization of PCM and hybrid PCM is essential, but it is not always possible to carry it out with conventional equipment, mainly due to the sample size. This paper shows equipment developed in different research centers and universities to analyze thermophysical properties, such as specific heat, latent heat and melting temperature, and thermal conductivity and diffusivity of PCM and hybrid PCM materials.

Suggested Citation

  • Cabeza, Luisa F. & Barreneche, Camila & Martorell, Ingrid & Miró, Laia & Sari-Bey, Sana & Fois, Magali & Paksoy, Halime O. & Sahan, Nurten & Weber, Robert & Constantinescu, Mariaella & Anghel, Elena M, 2015. "Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1399-1414.
  • Handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:1399-1414
    DOI: 10.1016/j.rser.2014.07.191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114006431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazaro, Ana & Peñalosa, Conchita & Solé, Aran & Diarce, Gonzalo & Haussmann, Thomas & Fois, Magali & Zalba, Belén & Gshwander, Stefan & Cabeza, Luisa F., 2013. "Intercomparative tests on phase change materials characterisation with differential scanning calorimeter," Applied Energy, Elsevier, vol. 109(C), pages 415-420.
    2. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    3. Gil, Antoni & Oró, Eduard & Peiró, Gerard & Álvarez, Servando & Cabeza, Luisa F., 2013. "Material selection and testing for thermal energy storage in solar cooling," Renewable Energy, Elsevier, vol. 57(C), pages 366-371.
    4. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    5. Tyagi, Vineet Veer & Buddhi, D., 2007. "PCM thermal storage in buildings: A state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1146-1166, August.
    6. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    7. Barreneche, Camila & de Gracia, Alvaro & Serrano, Susana & Elena Navarro, M. & Borreguero, Ana María & Inés Fernández, A. & Carmona, Manuel & Rodriguez, Juan Francisco & Cabeza, Luisa F., 2013. "Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials," Applied Energy, Elsevier, vol. 109(C), pages 421-427.
    8. Barreneche, Camila & Navarro, M. Elena & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale," Applied Energy, Elsevier, vol. 109(C), pages 428-432.
    9. Solé, Aran & Miró, Laia & Barreneche, Camila & Martorell, Ingrid & Cabeza, Luisa F., 2013. "Review of the T-history method to determine thermophysical properties of phase change materials (PCM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 425-436.
    10. Dolado, Pablo & Lazaro, Ana & Marin, Jose M. & Zalba, Belen, 2011. "Characterization of melting and solidification in a real-scale PCM–air heat exchanger: Experimental results and empirical model," Renewable Energy, Elsevier, vol. 36(11), pages 2906-2917.
    11. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    2. Castell, A. & Solé, C., 2015. "An overview on design methodologies for liquid–solid PCM storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 289-307.
    3. Veronika Stahl & Werner Kraft & Peter Vetter & Florian Feder, 2021. "Simulative Investigation of Thermal Capacity Analysis Methods for Metallic Latent Thermal Energy Storage Systems," Energies, MDPI, vol. 14(8), pages 1-14, April.
    4. Klimeš, Lubomír & Charvát, Pavel & Mastani Joybari, Mahmood & Zálešák, Martin & Haghighat, Fariborz & Panchabikesan, Karthik & El Mankibi, Mohamed & Yuan, Yanping, 2020. "Computer modelling and experimental investigation of phase change hysteresis of PCMs: The state-of-the-art review," Applied Energy, Elsevier, vol. 263(C).
    5. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    6. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    7. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    8. Arnold Martínez & Mauricio Carmona & Cristóbal Cortés & Inmaculada Arauzo, 2020. "Characterization of Thermophysical Properties of Phase Change Materials Using Unconventional Experimental Technologies," Energies, MDPI, vol. 13(18), pages 1-23, September.
    9. Zhou, Yuekuan & Zheng, Siqian, 2024. "A co-simulated material-component-system-district framework for climate-adaption and sustainability transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Soares, N. & Matias, T. & Durães, L. & Simões, P.N. & Costa, J.J., 2023. "Thermophysical characterization of paraffin-based PCMs for low temperature thermal energy storage applications for buildings," Energy, Elsevier, vol. 269(C).
    11. Meysam Nazari & Mohamed Jebrane & Nasko Terziev, 2020. "Bio-Based Phase Change Materials Incorporated in Lignocellulose Matrix for Energy Storage in Buildings—A Review," Energies, MDPI, vol. 13(12), pages 1-25, June.
    12. Inés Fernández, A. & Solé, Aran & Giró-Paloma, Jessica & Martínez, Mònica & Hadjieva, Mila & Boudenne, Abdel & Constantinescu, Mariaella & Maria Anghel, Elena & Malikova, Marta & Krupa, Igor & Peñalos, 2015. "Unconventional experimental technologies used for phase change materials (PCM) characterization: part 2 – morphological and structural characterization, physico-chemical stability and mechanical prope," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1415-1426.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    2. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    3. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "Adaptability research on phase change materials based technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 145-158.
    4. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    5. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    6. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    7. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    8. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    9. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    10. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    11. Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C. & Mahlia, T.M.I., 2013. "Curbing global warming with phase change materials for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 23-30.
    12. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    13. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    14. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    15. Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
    16. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    17. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    19. Solé, Aran & Miró, Laia & Barreneche, Camila & Martorell, Ingrid & Cabeza, Luisa F., 2013. "Review of the T-history method to determine thermophysical properties of phase change materials (PCM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 425-436.
    20. Iten, Muriel & Liu, Shuli & Shukla, Ashish, 2016. "A review on the air-PCM-TES application for free cooling and heating in the buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 175-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:1399-1414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.