IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v109y2013icp421-427.html
   My bibliography  Save this article

Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials

Author

Listed:
  • Barreneche, Camila
  • de Gracia, Alvaro
  • Serrano, Susana
  • Elena Navarro, M.
  • Borreguero, Ana María
  • Inés Fernández, A.
  • Carmona, Manuel
  • Rodriguez, Juan Francisco
  • Cabeza, Luisa F.

Abstract

Thermal properties of materials used in building envelopes must be analysed in order to evaluate the thermal response of the constructive system. This thermal characterisation is a key point during the design phase of a building. However, thermal characterisation of constructive systems at laboratory scale is difficult to be carried out under real environment conditions. In this paper, three devices developed by three different research groups in Spain were used to compare in an inter-laboratory test the performance, capabilities and thermal properties of construction systems at lab scale. Tested materials were gypsum blocks containing phase change materials (PCMs) and made by three different ways: using microencapsulated materials Micronal® DS5001, a suspension water/PCM and impregnation with RT21. The effective thermal conductivity, the total amount of heat accumulated, and the specific heat were measured using these homemade devices. k results followed same trend but there was a drift between them due to the samples porosity and thickness. Moreover, the k decreased when adding PCM but this behaviour was not followed by impregnated samples; due to the PCM filling gypsum pores instead of air. The Cp results followed same trend CpBlank

Suggested Citation

  • Barreneche, Camila & de Gracia, Alvaro & Serrano, Susana & Elena Navarro, M. & Borreguero, Ana María & Inés Fernández, A. & Carmona, Manuel & Rodriguez, Juan Francisco & Cabeza, Luisa F., 2013. "Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials," Applied Energy, Elsevier, vol. 109(C), pages 421-427.
  • Handle: RePEc:eee:appene:v:109:y:2013:i:c:p:421-427
    DOI: 10.1016/j.apenergy.2013.02.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913001797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.02.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    2. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    3. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    2. Navarro, Lidia & de Gracia, Alvaro & Niall, Dervilla & Castell, Albert & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system," Renewable Energy, Elsevier, vol. 85(C), pages 1334-1356.
    3. Cheng, Wenlong & Xie, Biao & Zhang, Rongming & Xu, Zhiming & Xia, Yuting, 2015. "Effect of thermal conductivities of shape stabilized PCM on under-floor heating system," Applied Energy, Elsevier, vol. 144(C), pages 10-18.
    4. Battista, Gabriele & de Lieto Vollaro, Emanuele & Grignaffini, Stefano & Ocłoń, Paweł & Vallati, Andrea, 2021. "Experimental investigation about the adoption of high reflectance materials on the envelope cladding on a scaled street canyon," Energy, Elsevier, vol. 230(C).
    5. D'Alessandro, Antonella & Pisello, Anna Laura & Fabiani, Claudia & Ubertini, Filippo & Cabeza, Luisa F. & Cotana, Franco, 2018. "Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation," Applied Energy, Elsevier, vol. 212(C), pages 1448-1461.
    6. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    7. Liang, Shuen & Li, Qianbiao & Zhu, Yalin & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Bai, Ruke, 2015. "Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion," Energy, Elsevier, vol. 93(P2), pages 1684-1692.
    8. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    9. Francesco Bianchi & Anna Laura Pisello & Giorgio Baldinelli & Francesco Asdrubali, 2014. "Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup," Sustainability, MDPI, vol. 6(10), pages 1-14, October.
    10. Cárdenas-Ramírez, Carolina & Gómez, Maryory A. & Jaramillo, Franklin & Cardona, Andrés F. & Fernández, Angel G. & Cabeza, Luisa F., 2022. "Experimental steady-state and transient thermal performance of materials for thermal energy storage in building applications: From powder SS-PCMs to SS-PCM-based acrylic plaster," Energy, Elsevier, vol. 250(C).
    11. Barreneche, Camila & Navarro, Lidia & de Gracia, Alvaro & Fernández, A. Inés & Cabeza, Luisa F., 2016. "In situ thermal and acoustic performance and environmental impact of the introduction of a shape-stabilized PCM layer for building applications," Renewable Energy, Elsevier, vol. 85(C), pages 281-286.
    12. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    13. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    15. Cabeza, Luisa F. & Barreneche, Camila & Martorell, Ingrid & Miró, Laia & Sari-Bey, Sana & Fois, Magali & Paksoy, Halime O. & Sahan, Nurten & Weber, Robert & Constantinescu, Mariaella & Anghel, Elena M, 2015. "Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1399-1414.
    16. Benhammou, Mohammed & Draoui, Belkacem & Hamouda, Messaoud, 2017. "Improvement of the summer cooling induced by an earth-to-air heat exchanger integrated in a residential building under hot and arid climate," Applied Energy, Elsevier, vol. 208(C), pages 428-445.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    2. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    3. Solé, Aran & Miró, Laia & Barreneche, Camila & Martorell, Ingrid & Cabeza, Luisa F., 2013. "Review of the T-history method to determine thermophysical properties of phase change materials (PCM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 425-436.
    4. Cabeza, Luisa F. & Barreneche, Camila & Martorell, Ingrid & Miró, Laia & Sari-Bey, Sana & Fois, Magali & Paksoy, Halime O. & Sahan, Nurten & Weber, Robert & Constantinescu, Mariaella & Anghel, Elena M, 2015. "Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1399-1414.
    5. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    6. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    7. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    8. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    9. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    10. José A. Tenorio & José Sánchez-Ramos & Álvaro Ruiz-Pardo & Servando Álvarez & Luisa F. Cabeza, 2015. "Energy Efficiency Indicators for Assessing Construction Systems Storing Renewable Energy: Application to Phase Change Material-Bearing Façades," Energies, MDPI, vol. 8(8), pages 1-20, August.
    11. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    12. Yuan, Yanping & Zhang, Nan & Li, Tianyu & Cao, Xiaoling & Long, Weiyue, 2016. "Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study," Energy, Elsevier, vol. 97(C), pages 488-497.
    13. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    15. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    16. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Fornarelli, F. & Camporeale, S.M. & Fortunato, B. & Torresi, M. & Oresta, P. & Magliocchetti, L. & Miliozzi, A. & Santo, G., 2016. "CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants," Applied Energy, Elsevier, vol. 164(C), pages 711-722.
    18. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    19. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "Adaptability research on phase change materials based technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 145-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:109:y:2013:i:c:p:421-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.