IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v39y2014icp277-295.html
   My bibliography  Save this article

User satisfaction adaptive behaviors for assessing energy efficient building indoor cooling and lighting environment

Author

Listed:
  • Keyvanfar, Ali
  • Shafaghat, Arezou
  • Abd Majid, Muhd Zaimi
  • Bin Lamit, Hasanuddin
  • Warid Hussin, Mohd
  • Binti Ali, Kherun Nita
  • Dhafer Saad, Alshahri

Abstract

Many techniques for managing sustainability including sustainable building assessment tools and standards have been developed globally. The sustainable building assessment tools measure the user satisfaction dependent to environmental and economic aspects of energy efficient building practices. However, these tools have not yet measure energy efficiency index by involving user satisfaction from adaptive behaviors dependently, which can determine the actual energy consumption versus the planed energy consumption of the building. Hence, this research aimed at providing a comprehensive list of adaptive behaviors for assessing energy efficient building indoor environment in design phase of building lifecycle. The study focused on identifying and establishing adaptive behaviors that are in response to indoor conditions provided by Cooling and Lighting systems in energy efficient office buildings. This research involves adaptations across Technological and Personal. The research was conducted in two phases. Phase one identified the list of user satisfaction adaptive behaviors through a systematic approach. Next, an expert input study was conducted to validate the findings of the literature review. Expert input data was collected using Delphi structured close group discussion method, and then analyzed through Grounded Group Decision Making (GGDM) method. Eight experts were involved in four sessions of the GGDM application procedure. The research established 18 adaptive behaviors relevant to cooling system in energy efficient indoor environments, and 18 adaptive behaviors relevant to the lighting system. The comprehensive list of user satisfaction adaptive behaviors can be applied in both current and future sustainable building assessment tools׳ energy efficiency indexes. This aids architects, engineers, facility managers, building owners, consultants, authorities, contractors, and academic researchers in accreditation of building users, building design and reduction of building׳s energy consumption.

Suggested Citation

  • Keyvanfar, Ali & Shafaghat, Arezou & Abd Majid, Muhd Zaimi & Bin Lamit, Hasanuddin & Warid Hussin, Mohd & Binti Ali, Kherun Nita & Dhafer Saad, Alshahri, 2014. "User satisfaction adaptive behaviors for assessing energy efficient building indoor cooling and lighting environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 277-295.
  • Handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:277-295
    DOI: 10.1016/j.rser.2014.07.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114005462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonard-Barton, Dorothy, 1981. "Voluntary Simplicity Lifestyles and Energy Conservation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 8(3), pages 243-252, December.
    2. Kesten Green & J. Scott Armstrong & Andreas Graefe, 2007. "Methods to Elicit Forecasts from Groups: Delphi and Prediction Markets Compared," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 8, pages 17-20, Fall.
    3. Clark, Kim B., 1985. "The interaction of design hierarchies and market concepts in technological evolution," Research Policy, Elsevier, vol. 14(5), pages 235-251, October.
    4. Roetzel, Astrid & Tsangrassoulis, Aris & Dietrich, Udo & Busching, Sabine, 2010. "A review of occupant control on natural ventilation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1001-1013, April.
    5. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    6. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    7. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    8. Brian Edwards, 2006. "Benefits of green offices in the UK: analysis from examples built in the 1990s," Sustainable Development, John Wiley & Sons, Ltd., vol. 14(3), pages 190-204.
    9. David Lorenz & Thomas Lützkendorf, 2008. "Sustainability in property valuation: theory and practice," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 26(6), pages 482-521, September.
    10. Veselý, Michal & Zeiler, Wim, 2014. "Personalized conditioning and its impact on thermal comfort and energy performance – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 401-408.
    11. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    12. Li, Danny H.W. & Cheung, K.L. & Wong, S.L. & Lam, Tony N.T., 2010. "An analysis of energy-efficient light fittings and lighting controls," Applied Energy, Elsevier, vol. 87(2), pages 558-567, February.
    13. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    14. Yu, Zhun (Jerry) & Haghighat, Fariborz & Fung, Benjamin C.M. & Morofsky, Edward & Yoshino, Hiroshi, 2011. "A methodology for identifying and improving occupant behavior in residential buildings," Energy, Elsevier, vol. 36(11), pages 6596-6608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    3. Jam Shahzaib Khan & Rozana Zakaria & Siti Mazzuana Shamsudin & Nur Izie Adiana Abidin & Shaza Rina Sahamir & Darul Nafis Abbas & Eeydzah Aminudin, 2019. "Evolution to Emergence of Green Buildings: A Review," Administrative Sciences, MDPI, vol. 9(1), pages 1-20, January.
    4. Fahim Huseien, Ghasan & Mirza, Jahangir & Ismail, Mohammad & Ghoshal, S.K. & Abdulameer Hussein, Ahmed, 2017. "Geopolymer mortars as sustainable repair material: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 54-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    2. Shafaghat, Arezou & Keyvanfar, Ali & Abd. Majid, Muhd Zaimi & Lamit, Hasanuddin Bin & Ahmad, Mohd Hamdan & Ferwati, Mohamed Salim & Ghoshal, Sib Krishna, 2016. "Methods for adaptive behaviors satisfaction assessment with energy efficient building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 250-259.
    3. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    5. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    6. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    7. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    8. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    9. Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
    10. Nappi-Choulet, Ingrid & Décamps, Aurélien, 2011. "Is Sustainability Attractive for Corporate Real Estate Decisions ?," ESSEC Working Papers WP1106, ESSEC Research Center, ESSEC Business School.
    11. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    12. Spandagos, Constantine & Yarime, Masaru & Baark, Erik & Ng, Tze Ling, 2020. "“Triple Target” policy framework to influence household energy behavior: Satisfy, strengthen, include," Applied Energy, Elsevier, vol. 269(C).
    13. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    14. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    15. Amin, Amin & Mourshed, Monjur, 2024. "Weather and climate data for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    17. Chen-Yi Sun & Yin-Guang Chen & Rong-Jing Wang & Shih-Chi Lo & Jyh-Tyng Yau & Ya-Wen Wu, 2019. "Construction Cost of Green Building Certified Residence: A Case Study in Taiwan," Sustainability, MDPI, vol. 11(8), pages 1-10, April.
    18. Hiroshi Mori & Tetsu Kubota & I Gusti Ngurah Antaryama & Sri Nastiti N. Ekasiwi, 2020. "Analysis of Window-Opening Patterns and Air Conditioning Usage of Urban Residences in Tropical Southeast Asia," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    19. Chenari, Behrang & Dias Carrilho, João & Gameiro da Silva, Manuel, 2016. "Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1426-1447.
    20. Ingrid Nappi-Choulet & Aurélien Decamps, 2012. "The impact of energy efficiency and green performance on the value of corporate real estate portfolios," ERES eres2012_145, European Real Estate Society (ERES).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:277-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.