IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i11p6596-6608.html
   My bibliography  Save this article

A methodology for identifying and improving occupant behavior in residential buildings

Author

Listed:
  • Yu, Zhun (Jerry)
  • Haghighat, Fariborz
  • Fung, Benjamin C.M.
  • Morofsky, Edward
  • Yoshino, Hiroshi

Abstract

This paper reports the development of a methodology for identifying and improving occupant behavior in existing residential buildings. In this study, end-use loads were divided into two levels (i.e. main and sub-category), and they were used to deduce corresponding two-level user activities (i.e. general and specific occupant behavior) indirectly. The proposed method is based on three basic data mining techniques: cluster analysis, classification analysis, and association rules mining. Cluster analysis and classification analysis are combined to analyze the main end-use loads, so as to identify energy-inefficient general occupant behavior. Then, association rules are mined to examine end-use loads at both levels, so as to identify energy-inefficient specific occupant behavior. In order to demonstrate its applicability, this methodology was applied to a group of residential buildings in Japan, and one building with the most comprehensive household appliances was selected as the case building. The results show that, for the case building, the method was able to identify the behavior which needs to be modified, and provide occupants with feasible recommendations so that they can make required decisions. Also, a reference building can be identified for the case building to evaluate its energy-saving potential due to occupant behavior modification. The results obtained could help building occupants to modify their behavior, thereby significantly reducing building energy consumption. Moreover, given that the proposed method is partly based on the comparison with similar buildings, it could motivate building occupants to modify their behavior.

Suggested Citation

  • Yu, Zhun (Jerry) & Haghighat, Fariborz & Fung, Benjamin C.M. & Morofsky, Edward & Yoshino, Hiroshi, 2011. "A methodology for identifying and improving occupant behavior in residential buildings," Energy, Elsevier, vol. 36(11), pages 6596-6608.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6596-6608
    DOI: 10.1016/j.energy.2011.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211005998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanatvanit, Somporn & Limmeechokchai, Bundit & Chungpaibulpatana, Supachart, 2003. "Sustainable energy development strategies: implications of energy demand management and renewable energy in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 367-395, October.
    2. van Ruijven, Bas & de Vries, Bert & van Vuuren, Detlef P. & van der Sluijs, Jeroen P., 2010. "A global model for residential energy use: Uncertainty in calibration to regional data," Energy, Elsevier, vol. 35(1), pages 269-282.
    3. Kenisarin, Murat & Kenisarina, Kamola, 2007. "Energy saving potential in the residential sector of Uzbekistan," Energy, Elsevier, vol. 32(8), pages 1319-1325.
    4. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    5. Shimoda, Yoshiyuki & Asahi, Takahiro & Taniguchi, Ayako & Mizuno, Minoru, 2007. "Evaluation of city-scale impact of residential energy conservation measures using the detailed end-use simulation model," Energy, Elsevier, vol. 32(9), pages 1617-1633.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Comodi, Gabriele & Cioccolanti, Luca & Renzi, Massimiliano, 2014. "Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency," Energy, Elsevier, vol. 68(C), pages 92-103.
    2. Omar Shafqat & Elena Malakhatka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    3. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    4. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
    5. Hamed Nabizadeh Rafsanjani & Changbum R. Ahn & Mahmoud Alahmad, 2015. "A Review of Approaches for Sensing, Understanding, and Improving Occupancy-Related Energy-Use Behaviors in Commercial Buildings," Energies, MDPI, vol. 8(10), pages 1-34, October.
    6. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    7. Taniguchi-Matsuoka, Ayako & Shimoda, Yoshiyuki & Sugiyama, Minami & Kurokawa, Yusuke & Matoba, Haruka & Yamasaki, Tomoya & Morikuni, Taro & Yamaguchi, Yohei, 2020. "Evaluating Japan’s national greenhouse gas reduction policy using a bottom-up residential end-use energy simulation model," Applied Energy, Elsevier, vol. 279(C).
    8. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
    9. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    10. Theofano Fotiou & Alessia de Vita & Pantelis Capros, 2019. "Economic-Engineering Modelling of the Buildings Sector to Study the Transition towards Deep Decarbonisation in the EU," Energies, MDPI, vol. 12(14), pages 1-28, July.
    11. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    12. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    13. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Ó Broin, Eoin & Mata, Érika & Göransson, Anders & Johnsson, Filip, 2013. "The effect of improved efficiency on energy savings in EU-27 buildings," Energy, Elsevier, vol. 57(C), pages 134-148.
    15. Shimoda, Yoshiyuki & Okamura, Tomo & Yamaguchi, Yohei & Yamaguchi, Yukio & Taniguchi, Ayako & Morikawa, Takao, 2010. "City-level energy and CO2 reduction effect by introducing new residential water heaters," Energy, Elsevier, vol. 35(12), pages 4880-4891.
    16. Estiri, Hossein, 2015. "The indirect role of households in shaping US residential energy demand patterns," Energy Policy, Elsevier, vol. 86(C), pages 585-594.
    17. Shiraki, Hiroto & Nakamura, Shogo & Ashina, Shuichi & Honjo, Keita, 2016. "Estimating the hourly electricity profile of Japanese households – Coupling of engineering and statistical methods," Energy, Elsevier, vol. 114(C), pages 478-491.
    18. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    19. Tso, Geoffrey K.F. & Guan, Jingjing, 2014. "A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption," Energy, Elsevier, vol. 66(C), pages 722-731.
    20. Shimoda, Yoshiyuki & Sugiyama, Minami & Nishimoto, Ryuya & Momonoki, Takashi, 2021. "Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050," Applied Energy, Elsevier, vol. 303(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6596-6608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.