Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wan, K. S. Y. & Yik, F. W. H., 2004. "Building design and energy end-use characteristics of high-rise residential buildings in Hong Kong," Applied Energy, Elsevier, vol. 78(1), pages 19-36, May.
- Rajapaksha, I. & Nagai, H. & Okumiya, M., 2003. "A ventilated courtyard as a passive cooling strategy in the warm humid tropics," Renewable Energy, Elsevier, vol. 28(11), pages 1755-1778.
- Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
- Aktacir, Mehmet Azmi & Büyükalaca, Orhan & YIlmaz, Tuncay, 2010. "A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions," Applied Energy, Elsevier, vol. 87(2), pages 599-607, February.
- Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
- Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
- Martinaitis, Vytautas & Kazakevicius, Eduardas & Vitkauskas, Aloyzas, 2007. "A two-factor method for appraising building renovation and energy efficiency improvement projects," Energy Policy, Elsevier, vol. 35(1), pages 192-201, January.
- Wang, Ke & Wei, Yi-Ming, 2016.
"Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator,"
Energy Economics, Elsevier, vol. 54(C), pages 50-59.
- Ke Wang & Yi-Ming Wei, 2015. "Sources of energy productivity change in China during 1997-2012: A decomposition analysis based on the Luenberger productivity indicator," CEEP-BIT Working Papers 86, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
- Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.
- Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.
- Pérez, Gabriel & Rincón, Lídia & Vila, Anna & González, Josep M. & Cabeza, Luisa F., 2011. "Green vertical systems for buildings as passive systems for energy savings," Applied Energy, Elsevier, vol. 88(12), pages 4854-4859.
- Cuce, Erdem, 2017. "Thermal regulation impact of green walls: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 194(C), pages 247-254.
- Ming Zhang & Yan Song & Lixia Yao, 2015. "Exploring commercial sector building energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2673-2682, February.
- Peeters, Leen & Dear, Richard de & Hensen, Jan & D'haeseleer, William, 2009. "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation," Applied Energy, Elsevier, vol. 86(5), pages 772-780, May.
- Chwieduk, Dorota, 2003. "Towards sustainable-energy buildings," Applied Energy, Elsevier, vol. 76(1-3), pages 211-217, September.
- Al-Masri, Nada & Abu-Hijleh, Bassam, 2012. "Courtyard housing in midrise buildings: An environmental assessment in hot-arid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1892-1898.
- Zhang, Yue-Jun & Peng, Hua-Rong, 2017. "Exploring the direct rebound effect of residential electricity consumption: An empirical study in China," Applied Energy, Elsevier, vol. 196(C), pages 132-141.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Iman Ibrahim & Nadia Al Badri & Emad Mushtaha & Osama Omar, 2021. "Evaluating the Impacts of Courtyards on Educational Buildings, Case Study in the University of Sharjah," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
- Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
- Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
- Alimohammadisagvand, Behrang & Jokisalo, Juha & Sirén, Kai, 2018. "Comparison of four rule-based demand response control algorithms in an electrically and heat pump-heated residential building," Applied Energy, Elsevier, vol. 209(C), pages 167-179.
- Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
- Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
- Jing Xiao & Takaya Yuizono & Ruixuan Li, 2024. "Synergistic Landscape Design Strategies to Renew Thermal Environment: A Case Study of a Cfa-Climate Urban Community in Central Komatsu City, Japan," Sustainability, MDPI, vol. 16(13), pages 1-29, June.
- Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
- Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
- Xiaodong Xu & Fenlan Luo & Wei Wang & Tianzhen Hong & Xiuzhang Fu, 2018. "Performance-Based Evaluation of Courtyard Design in China’s Cold-Winter Hot-Summer Climate Regions," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
- Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
- Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
- Taleghani, Mohammad & Tenpierik, Martin & van den Dobbelsteen, Andy, 2014. "Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change," Renewable Energy, Elsevier, vol. 63(C), pages 486-497.
- Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
- Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Cuce, Pinar Mert & Riffat, Saffa, 2016. "A state of the art review of evaporative cooling systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1240-1249.
- Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
- Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
More about this item
Keywords
vertical courtyard system; thermal conditions; cooling effect; hot-humid climate; field measurement;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2591-:d:336719. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.