IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i3p971-975.html
   My bibliography  Save this article

Anaerobic mesophilic co-digestion of sugar-beet processing wastewater and beet-pulp in batch reactors

Author

Listed:
  • Alkaya, Emrah
  • Demirer, Göksel N.

Abstract

In this study, biochemical methane potential (BMP) assay was conducted to investigate the effect of waste mixing and F/M ratio on the co-digestion of wastewater and beet-pulp, in addition to the digestion of the wastes separately. In the studied F/M range (0.51–2.56 g COD/g VSS), observed treatment efficiencies (63.7–87.3% COD removal and 69.6–89.3% VS reduction) were indications of high biodegradability for both wastewater and beet-pulp, which decreased with increasing F/M. It was evident that the extent of biomethanation of wastewater was higher than beet-pulp, owing to the inherent soluble carbohydrates in wastewater. When the co-digestion of the wastes was evaluated, it came up with the result that, major outcome of wastewater addition was to increase methane production rate of beet-pulp, rather than increasing its ultimate biodegradability. Indeed, modeled first-order rate functions indicated that rate constants (k values) differentiated in the ranges between 0.081 and 0.143 day−1 and 0.028–0.050 day−1 respectively for wastewater added and non-added reactors. These results indicated that anaerobic co-digestion of wastewater and beet-pulp is promising since wastewater addition significantly increases the rate of biomethanation of beet-pulp.

Suggested Citation

  • Alkaya, Emrah & Demirer, Göksel N., 2011. "Anaerobic mesophilic co-digestion of sugar-beet processing wastewater and beet-pulp in batch reactors," Renewable Energy, Elsevier, vol. 36(3), pages 971-975.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:3:p:971-975
    DOI: 10.1016/j.renene.2010.08.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110004118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.08.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parawira, W & Murto, M & Zvauya, R & Mattiasson, B, 2004. "Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves," Renewable Energy, Elsevier, vol. 29(11), pages 1811-1823.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
    2. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    3. Noonari, A.A. & Mahar, R.B. & Sahito, A.R. & Brohi, K.M., 2019. "Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield," Renewable Energy, Elsevier, vol. 133(C), pages 1046-1054.
    4. Borowski, Sebastian & Kucner, Marcin & Czyżowska, Agata & Berłowska, Joanna, 2016. "Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp," Renewable Energy, Elsevier, vol. 99(C), pages 492-500.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
    2. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    3. P. Elaiyaraju & N. Partha, 2016. "Studies on biogas production by anaerobic process using agroindustrial wastes," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(2), pages 73-82.
    4. Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
    5. Spyridon Achinas & Yu Li & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "Biogas Potential from the Anaerobic Digestion of Potato Peels: Process Performance and Kinetics Evaluation," Energies, MDPI, vol. 12(12), pages 1-16, June.
    6. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    7. Bo Zhang & Wenzhe Li & Xiang Xu & Pengfei Li & Nan Li & Hongqiong Zhang & Yong Sun, 2019. "Effect of Aerobic Hydrolysis on Anaerobic Fermentation Characteristics of Various Parts of Corn Stover and the Scum Layer," Energies, MDPI, vol. 12(3), pages 1-15, January.
    8. Parawira, W. & Murto, M. & Zvauya, R. & Mattiasson, B., 2006. "Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate," Renewable Energy, Elsevier, vol. 31(6), pages 893-903.
    9. Ekwenna, Emeka Boniface & Wang, Yaodong & Roskilly, Anthony, 2023. "Bioenergy production from pretreated rice straw in Nigeria: An analysis of novel three-stage anaerobic digestion for hydrogen and methane co-generation," Applied Energy, Elsevier, vol. 348(C).
    10. Owamah, H.I. & Alfa, M.I. & Dahunsi, S.O., 2014. "Optimization of biogas from chicken droppings with Cymbopogon citratus," Renewable Energy, Elsevier, vol. 68(C), pages 366-371.
    11. Nges, Ivo Achu & Liu, Jing, 2010. "Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 35(10), pages 2200-2206.
    12. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. Moritz Wagner & Larissa Kamp & Simone Graeff-Hönninger & Iris Lewandowski, 2019. "Environmental and Economic Performance of Yacon ( Smallanthus sonchifolius ) Cultivated for Fructooligosaccharide Production," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
    14. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
    15. Wandera, Simon M. & Qiao, Wei & Algapani, Dalal E. & Bi, Shaojie & Yin, Dongmin & Qi, Xiangyang & Liu, Yueling & Dach, Jacek & Dong, Renjie, 2018. "Searching for possibilities to improve the performance of full scale agricultural biogas plants," Renewable Energy, Elsevier, vol. 116(PA), pages 720-727.
    16. Singh, S.P. & Prerna, Pandey, 2009. "Review of recent advances in anaerobic packed-bed biogas reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1569-1575, August.
    17. Hossain, Md. Sanowar & Das, Barun K. & Das, Arnob & Roy, Tamal Krishna, 2024. "Investigating the techno-economic and environmental feasibility of biogas-based power generation potential using food waste in Bangladesh," Renewable Energy, Elsevier, vol. 232(C).
    18. Bożym, Marta & Florczak, Iwona & Zdanowska, Paulina & Wojdalski, Janusz & Klimkiewicz, Marek, 2015. "An analysis of metal concentrations in food wastes for biogas production," Renewable Energy, Elsevier, vol. 77(C), pages 467-472.
    19. Demirel, Burak & Scherer, Paul, 2009. "Bio-methanization of energy crops through mono-digestion for continuous production of renewable biogas," Renewable Energy, Elsevier, vol. 34(12), pages 2940-2945.
    20. Dar, R.A. & Parmar, M. & Dar, E.A. & Sani, R.K. & Phutela, U.G., 2021. "Biomethanation of agricultural residues: Potential, limitations and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:3:p:971-975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.