IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp264-271.html
   My bibliography  Save this article

Ipomoea aquatica as a new substrate for enhanced biohydrogen production by using digested sludge as inoculum

Author

Listed:
  • Stanislaus, Mishma S.
  • Zhang, Nan
  • Zhao, Chenyu
  • Zhu, Qi
  • Li, Dawei
  • Yang, Yingnan

Abstract

Ipomoea aquatica, a tropical plant was used as a new substrate, and the digested sludge (DS) was used as inoculum for biohydrogen production. In order to inhibit the hydrogen consuming bacteria (HCB), the DS was subjected to thermal and acid pretreatment to identify the optimum method. The results showed that thermal pretreatment was better than acid pretreatment. To further investigate the best thermal pretreatment condition of DS, response surface methodology (RSM) was employed. Consecutively, thermal pretreatment at 90 °C for 60 min was identified as the optimum pretreatment condition for inoculum. Further, Ipomoea aquatica used as substrate was also optimized under conditions like freezing, boiling, and alkali pretreatment to attain high hydrogen yield (HY). Frozen and dried I. aquatica demonstrated the highest HY of 217.16 mL/g-VS, which was manifold higher than control and other treatment conditions. The energy consumed in the fermentation process was evaluated which was lesser than energy produced in the process. Furthermore, a practical process was proposed. To the best of our knowledge, it's the first time that I. aquatica was used as substrate to produce hydrogen through an attractive process that could not only benefit the environment by water purification but also contributes to clean energy production.

Suggested Citation

  • Stanislaus, Mishma S. & Zhang, Nan & Zhao, Chenyu & Zhu, Qi & Li, Dawei & Yang, Yingnan, 2017. "Ipomoea aquatica as a new substrate for enhanced biohydrogen production by using digested sludge as inoculum," Energy, Elsevier, vol. 118(C), pages 264-271.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:264-271
    DOI: 10.1016/j.energy.2016.12.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216318473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wong, Y.M. & Juan, J.C. & Ting, Adeline & Wu, T.Y., 2014. "High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge," Energy, Elsevier, vol. 72(C), pages 628-635.
    2. Guo, Liang & Li, Xiao-Ming & Zeng, Guang-Ming & Zhou, Yi, 2010. "Effective hydrogen production using waste sludge and its filtrate," Energy, Elsevier, vol. 35(9), pages 3557-3562.
    3. Xia, Ao & Cheng, Jun & Ding, Lingkan & Lin, Richen & Song, Wenlu & Zhou, Junhu & Cen, Kefa, 2014. "Effects of changes in microbial community on the fermentative production of hydrogen and soluble metabolites from Chlorella pyrenoidosa biomass in semi-continuous operation," Energy, Elsevier, vol. 68(C), pages 982-988.
    4. Tedesco, S. & Benyounis, K.Y. & Olabi, A.G., 2013. "Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland," Energy, Elsevier, vol. 61(C), pages 27-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morsy, Fatthy Mohamed & Ibrahim, Samir Hag, 2016. "Concomitant hydrolysis of sucrose by the long half-life time yeast invertase and hydrogen production by the hydrogen over-producing Escherichia coli HD701," Energy, Elsevier, vol. 109(C), pages 412-419.
    2. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    3. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    4. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    5. Nassef, Ahmed M. & Olabi, A.G. & Rodriguez, Cristina & Abdelkareem, Mohammad Ali & Rezk, Hegazy, 2021. "Optimal operating parameter determination and modeling to enhance methane production from macroalgae," Renewable Energy, Elsevier, vol. 163(C), pages 2190-2197.
    6. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    7. Zeng, Xianhai & Guo, Xiaoyi & Su, Gaomin & Danquah, Michael K. & Zhang, Shiduo & Lu, Yinghua & Sun, Yong & Lin, Lu, 2015. "Bioprocess considerations for microalgal-based wastewater treatment and biomass production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1385-1392.
    8. Papurello, Davide & Lanzini, Andrea & Tognana, Lorenzo & Silvestri, Silvia & Santarelli, Massimo, 2015. "Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack," Energy, Elsevier, vol. 85(C), pages 145-158.
    9. Xia, Ao & Cheng, Jun & Lin, Richen & Ding, Lingkan & Zhou, Junhu & Cen, Kefa, 2013. "Combination of hydrogen fermentation and methanogenesis to enhance energy conversion efficiency from trehalose," Energy, Elsevier, vol. 55(C), pages 631-637.
    10. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    11. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    12. Kehinde O. Olatunji & Daniel M. Madyira & Jacob O. Amos, 2024. "Sustainable enhancement of biogas and methane yield of macroalgae biomass using different pretreatment techniques: A mini-review," Energy & Environment, , vol. 35(2), pages 1050-1088, March.
    13. Hwang, Jae-Hoon & Kabra, Akhil N. & Kim, Jung Rae & Jeon, Byong-Hun, 2014. "Photoheterotrophic microalgal hydrogen production using acetate- and butyrate-rich wastewater effluent," Energy, Elsevier, vol. 78(C), pages 887-894.
    14. Kadier, Abudukeremu & Abdeshahian, Peyman & Simayi, Yibadatihan & Ismail, Manal & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2015. "Grey relational analysis for comparative assessment of different cathode materials in microbial electrolysis cells," Energy, Elsevier, vol. 90(P2), pages 1556-1562.
    15. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Xia, Ao & Murphy, Jerry D., 2015. "What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?," Energy, Elsevier, vol. 81(C), pages 352-360.
    16. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    17. Ido, Alexander L. & de Luna, Mark Daniel G. & Capareda, Sergio C. & Maglinao, Amado L. & Nam, Hyungseok, 2018. "Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction," Energy, Elsevier, vol. 157(C), pages 949-956.
    18. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
    19. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.
    20. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:264-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.