IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i12p2093-d239415.html
   My bibliography  Save this article

The Potential of Remedial Techniques for Hazard Reduction of Steel Process by Products: Impact on Steel Processing, Waste Management, the Environment and Risk to Human Health

Author

Listed:
  • Kiri Rodgers

    (School of Health and Life Science, University of the West of Scotland, Paisley PA1 2BE, UK)

  • Iain McLellan

    (Engineering and Physical Sciences, School of Computing, University of the West of Scotland, Paisley PA1 2BE, UK)

  • Simon Cuthbert

    (Engineering and Physical Sciences, School of Computing, University of the West of Scotland, Paisley PA1 2BE, UK)

  • Victoria Masaguer Torres

    (ArcelorMittal Global R&D Asturias, Marques de Suances s/n - Apartado 90, 33400 Avilés, Spain)

  • Andrew Hursthouse

    (Engineering and Physical Sciences, School of Computing, University of the West of Scotland, Paisley PA1 2BE, UK
    Hunan Regional Key Laboratory for Shale Gas Resource Exploitation, Hunan University of Science and Technology, Xiangtan 411201, China)

Abstract

The negative impact from industrial pollution of the environment is still a global occurrence, and as a consequence legislation and subsequent regulation is becoming increasingly stringent in response, in particular, to minimising potential impact on human health. These changes have generated growing pressures for the steel industry to innovate to meet new regulations driving a change to the approach to waste management across the industrial landscape, with increasing focus on the principles of a circular economy. With a knowledge of the compositional profiles of process by-products, we have assessed chemical cleaning to improve environmental performance and minimise disruption to manufacturing processes, demonstrating re-use and recycling capacity. We show that with a knowledge of phase composition, we are able to apply stabilisation methods that can either utilise waste streams directly or allow manipulation, making them suitable for re-use and/or inert disposal. We studied blast furnace slags and Portland cement mixes (50%/50% and 30%/70%) with a variety of other plant wastes (electrostatic precipitator dusts (ESP), blast furnace (BF) sludge and basic oxygen furnace (BOF) sludge) which resulted in up to 90% immobilisation of hazardous constituents. The addition of organic additives i.e., citric acid can liberate or immobilise problematic constituents; in the case of K, both outcomes occurred depending on the waste type; ESP dust BF sludge and BOF fine sludge. Pb and Zn however were liberated with a 50–80% and 50–60% residue reduction respectively, which generates possibilities for alternative uses of materials to reduce environmental and human health impact.

Suggested Citation

  • Kiri Rodgers & Iain McLellan & Simon Cuthbert & Victoria Masaguer Torres & Andrew Hursthouse, 2019. "The Potential of Remedial Techniques for Hazard Reduction of Steel Process by Products: Impact on Steel Processing, Waste Management, the Environment and Risk to Human Health," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:12:p:2093-:d:239415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/12/2093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/12/2093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Renu & Shukla, Ashish, 2014. "A review on methods of flue gas cleaning from combustion of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 854-864.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ecaterina Matei & Andra Mihaela Predescu & Anca Andreea Șăulean & Maria Râpă & Mirela Gabriela Sohaciu & George Coman & Andrei-Constantin Berbecaru & Cristian Predescu & Dumitru Vâju & Grigore Vlad, 2022. "Ferrous Industrial Wastes—Valuable Resources for Water and Wastewater Decontamination," IJERPH, MDPI, vol. 19(21), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gollmer, Christian & Höfer, Isabel & Kaltschmitt, Martin, 2021. "Laboratory-scale additive content assessment for aluminum-silicate-based wood chip additivation," Renewable Energy, Elsevier, vol. 164(C), pages 1471-1484.
    2. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    3. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    4. Schumacher, Felix & Nussbaumer, Thomas, 2023. "Four approaches for the year-round operation of wood-fired heating plants with low pollutant emissions," Energy, Elsevier, vol. 278(C).
    5. Poškas, Robertas & Sirvydas, Arūnas & Poškas, Povilas & Jouhara, Hussam & Striūgas, Nerijus & Pedišius, Nerijus & Valinčius, Vitas, 2018. "Investigation of warm gas clean-up of biofuel flue and producer gas using electrostatic precipitator," Energy, Elsevier, vol. 143(C), pages 943-949.
    6. Jaworek, A. & Sobczyk, A.T. & Marchewicz, A. & Krupa, A. & Czech, T., 2021. "Particulate matter emission control from small residential boilers after biomass combustion. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Kougioumtzis, Michael Alexandros & Kanaveli, Ioanna Panagiota & Karampinis, Emmanouil & Grammelis, Panagiotis & Kakaras, Emmanuel, 2021. "Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency," Renewable Energy, Elsevier, vol. 171(C), pages 516-525.
    8. Gaigalis, Vygandas & Skema, Romualdas, 2016. "A review on solid biofuel usage in Lithuania after the decommission of Ignalina NPP and compliance with the EU policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 974-988.
    9. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Natalia Cid & Juan Jesús Rico & Raquel Pérez-Orozco & Ana Larrañaga, 2021. "Experimental Study of the Performance of a Laboratory-Scale ESP with Biomass Combustion: Discharge Electrode Disposition, Dynamic Control Unit and Aging Effect," Sustainability, MDPI, vol. 13(18), pages 1-12, September.
    11. Wan Isahak, Wan Nor Roslam & Che Ramli, Zatil Amali & Mohamed Hisham, Mohamed Wahab & Yarmo, Mohd Ambar, 2015. "The formation of a series of carbonates from carbon dioxide: Capturing and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 93-106.
    12. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    13. Andrzej Sitka & Wiesław Jodkowski & Piotr Szulc & Daniel Smykowski & Bogusław Szumiło, 2021. "Study of the Properties and Particulate Matter Content of the Gas from the Innovative Pilot-Scale Gasification Installation with Integrated Ceramic Filter," Energies, MDPI, vol. 14(22), pages 1-11, November.
    14. Marzieh Bagheri & Marcus Öhman & Elisabeth Wetterlund, 2022. "Techno-Economic Analysis of Scenarios on Energy and Phosphorus Recovery from Mono- and Co-Combustion of Municipal Sewage Sludge," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    15. Raheem, Abdur & Hassan, Mohammad Yusri & Shakoor, Rabia, 2016. "Bioenergy from anaerobic digestion in Pakistan: Potential, development and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 264-275.
    16. Thomas, Paul & Soren, Nirmala & Rumjit, Nelson Pynadathu & George James, Jake & Saravanakumar, M.P., 2017. "Biomass resources and potential of anaerobic digestion in Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 718-730.
    17. Bartosz Ciupek & Karol Gołoś & Radosław Jankowski & Zbigniew Nadolny, 2021. "Effect of Hard Coal Combustion in Water Steam Environment on Chemical Composition of Exhaust Gases," Energies, MDPI, vol. 14(20), pages 1-24, October.
    18. Singh, Renu & Shukla, Ashish & Tiwari, Sapna & Srivastava, Monika, 2014. "A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 713-728.
    19. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    20. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:12:p:2093-:d:239415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.