IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124004301.html
   My bibliography  Save this article

Mechanism, performance enhancement, and economic feasibility of CO2 microbial electrosynthesis systems: A data-driven analysis of research topics and trends

Author

Listed:
  • Ying, Zanyun
  • Qiu, Qianlinglin
  • Ye, Jiexu
  • Chen, Han
  • Zhao, Jingkai
  • Shen, Yao
  • Chu, Bei
  • Gao, Hanmin
  • Zhang, Shihan

Abstract

Microbial electrosynthesis (MES), a neoteric technology, has attracted much interest in recent ten years. This work conducts network analyses in the CO2 bio-reduction based on MES to reveal critical information and guidance on the reports published, the topical changes involved, and the areas deserving extra attention. The research progress can be divided into three stages with themes of exploring electron transfer mechanisms, enhancing MES performance, and improving MES economic feasibility, respectively. Sufficient understanding of extracellular electron transfer is the basis for enhancements of productivity and selectivity towards CO2 bioelectrosynthesis, and more tools are combined to explore the kinetics of electron transfer and expression of functional genes. The promotion of MES performance can be achieved by not only improving the configurations and structures of MES reactor itself but also integrating it with other units. Efficient strategies, like electrode modification, electron donor addition, CO2 supply mode shift, and imposed potential regulation, are demonstrated to boost the production of longer carbon chain carboxylates and corresponding alcohols. In the perspective of economic development and environmental sustainability, renewable surplus energy to bioelectrochemically converse the CO2 captured using negative emission technology is recommended for reducing carbon emissions. Moreover, specific aspects related to the mechanism, performance and application that are worthy of coverage in future researches are also elucidated. This review aims to provide references for researchers dedicated to effective CO2 abatement via MES.

Suggested Citation

  • Ying, Zanyun & Qiu, Qianlinglin & Ye, Jiexu & Chen, Han & Zhao, Jingkai & Shen, Yao & Chu, Bei & Gao, Hanmin & Zhang, Shihan, 2024. "Mechanism, performance enhancement, and economic feasibility of CO2 microbial electrosynthesis systems: A data-driven analysis of research topics and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004301
    DOI: 10.1016/j.rser.2024.114704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Y. & Liu, W. & Yong, J.Y. & Zhang, X.J. & Jiang, L., 2023. "Solar-assisted temperature vacuum swing adsorption for direct air capture: Effect of relative humidity," Applied Energy, Elsevier, vol. 348(C).
    2. Xue Wang & Pengfei Ou & Adnan Ozden & Sung-Fu Hung & Jason Tam & Christine M. Gabardo & Jane Y. Howe & Jared Sisler & Koen Bertens & F. Pelayo García de Arquer & Rui Kai Miao & Colin P. O’Brien & Ziyu, 2022. "Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst," Nature Energy, Nature, vol. 7(2), pages 170-176, February.
    3. Pan, Qin & Tian, Xiaochun & Li, Junpeng & Wu, Xuee & Zhao, Feng, 2021. "Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems," Applied Energy, Elsevier, vol. 292(C).
    4. Yang, Hou-Yun & Wang, Yi-Xuan & He, Chuan-Shu & Qin, Yuan & Li, Wen-Qiang & Li, Wei-Hua & Mu, Yang, 2020. "Redox mediator-modified biocathode enables highly efficient microbial electro-synthesis of methane from carbon dioxide," Applied Energy, Elsevier, vol. 274(C).
    5. Zhang, Lijuan & Ong, Jacky & Liu, Junyi & Li, Sam Fong Yau, 2017. "Enzymatic electrosynthesis of formate from CO2 reduction in a hybrid biofuel cell system," Renewable Energy, Elsevier, vol. 108(C), pages 581-588.
    6. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    7. Luo, Dan & Ding, Hong & Guo, Ting & Li, Xiangling & Song, Tianshun & Xie, Jingjing, 2023. "Self-assembly of graphene oxide and Shewanella oneidensis MR-1 formed a conductive bio-abiotic composite for enhancing microbial electrosynthesis performance," Renewable Energy, Elsevier, vol. 215(C).
    8. Trindade, Wagner Roberto da Silva & Santos, Rogério Gonçalves dos, 2017. "Review on the characteristics of butanol, its production and use as fuel in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 642-651.
    9. Phuc T. Ha & Stephen R. Lindemann & Liang Shi & Alice C. Dohnalkova & James K. Fredrickson & Michael T. Madigan & Haluk Beyenal, 2017. "Syntrophic anaerobic photosynthesis via direct interspecies electron transfer," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    10. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    11. Izadi, Paniz & Fontmorin, Jean-Marie & Virdis, Bernardino & Head, Ian M. & Yu, Eileen H., 2021. "The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis," Applied Energy, Elsevier, vol. 283(C).
    12. Jourdin, Ludovic & Sousa, João & Stralen, Niels van & Strik, David P.B.T.B., 2020. "Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: An interdisciplinary roadmap towards future research and application," Applied Energy, Elsevier, vol. 279(C).
    13. Detlef P. van Vuuren & Elke Stehfest & David E. H. J. Gernaat & Maarten Berg & David L. Bijl & Harmen Sytze Boer & Vassilis Daioglou & Jonathan C. Doelman & Oreane Y. Edelenbosch & Mathijs Harmsen & A, 2018. "Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies," Nature Climate Change, Nature, vol. 8(5), pages 391-397, May.
    14. Bian, Bin & Shi, Le & Katuri, Krishna P. & Xu, Jiajie & Wang, Peng & Saikaly, Pascal E., 2020. "Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode," Applied Energy, Elsevier, vol. 278(C).
    15. Zhang, Kang & Qiu, Zhenyu & Luo, Dan & Song, Tianshun & Xie, Jingjing, 2023. "Hybrid electron donors of ethanol and lactate stimulation chain elongation in microbial electrosynthesis with different inoculants," Renewable Energy, Elsevier, vol. 202(C), pages 942-951.
    16. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    17. Juan-Rodrigo Bastidas-Oyanedel & Jens Ejbye Schmidt, 2018. "Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis," Energies, MDPI, vol. 11(6), pages 1-14, June.
    18. Yang, Liangcheng & Ge, Xumeng & Wan, Caixia & Yu, Fei & Li, Yebo, 2014. "Progress and perspectives in converting biogas to transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1133-1152.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spyridoula Gerassimidou & Olwenn V. Martin & Gilenny Yamily Feliz Diaz & Chaoying Wan & Dimitrios Komilis & Eleni Iacovidou, 2022. "Systematic Evidence Mapping to Assess the Sustainability of Bioplastics Derived from Food Waste: Do We Know Enough?," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    2. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    3. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    4. Zhuyuan Wang & Ting Hu & Mike Tebyetekerwa & Xiangkang Zeng & Fan Du & Yuan Kang & Xuefeng Li & Hao Zhang & Huanting Wang & Xiwang Zhang, 2024. "Electricity generation from carbon dioxide adsorption by spatially nanoconfined ion separation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    7. Jadhav, Dipak A. & Ghosh Ray, Sreemoyee & Ghangrekar, Makarand M., 2017. "Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1022-1031.
    8. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Kwon, Oseok & Han, Jeehoon, 2021. "Waste-to-bioethanol supply chain network: A deterministic model," Applied Energy, Elsevier, vol. 300(C).
    11. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    12. Xu, Liang & Li, Qi & Myers, Matthew & Cao, Xiaomin, 2023. "Investigation of the enhanced oil recovery mechanism of CO2 synergistically with nanofluid in tight glutenite," Energy, Elsevier, vol. 273(C).
    13. Hsing-Hsuan Chen & Andries F. Hof & Vassilis Daioglou & Harmen Sytze de Boer & Oreane Y. Edelenbosch & Maarten van den Berg & Kaj-Ivar van der Wijst & Detlef P. van Vuuren, 2021. "Using Decomposition Analysis to Determine the Main Contributing Factors to Carbon Neutrality across Sectors," Energies, MDPI, vol. 15(1), pages 1-18, December.
    14. Zhao, Rui & Liu, Dong, 2022. "Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames," Energy, Elsevier, vol. 257(C).
    15. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    16. Mumbunan, Sonny & Maitri, Ni Made Rahayu, 2022. "A Review of Basic Income for Nature and Climate," OSF Preprints bre43, Center for Open Science.
    17. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    18. Byun, Jaewon & Han, Jeehoon, 2021. "Economically feasible production of green methane from vegetable and fruit-rich food waste," Energy, Elsevier, vol. 235(C).
    19. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    20. Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.