Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Elbeshbishy, Elsayed & Dhar, Bipro Ranjan & Nakhla, George & Lee, Hyung-Sool, 2017. "A critical review on inhibition of dark biohydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 656-668.
- Ghimire, Anish & Frunzo, Luigi & Pirozzi, Francesco & Trably, Eric & Escudie, Renaud & Lens, Piet N.L. & Esposito, Giovanni, 2015. "A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products," Applied Energy, Elsevier, vol. 144(C), pages 73-95.
- Palomo-Briones, Rodolfo & Razo-Flores, Elías & Bernet, Nicolas & Trably, Eric, 2017. "Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control," Applied Energy, Elsevier, vol. 198(C), pages 77-87.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Onwudili, Jude A. & Nouwe Edou, Danielle J., 2022. "Process modelling and economic evaluation of biopropane production from aqueous butyric acid feedstock," Renewable Energy, Elsevier, vol. 184(C), pages 80-90.
- Spyridoula Gerassimidou & Olwenn V. Martin & Gilenny Yamily Feliz Diaz & Chaoying Wan & Dimitrios Komilis & Eleni Iacovidou, 2022. "Systematic Evidence Mapping to Assess the Sustainability of Bioplastics Derived from Food Waste: Do We Know Enough?," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
- Kwon, Oseok & Han, Jeehoon, 2021. "Supply chain management of butyric acid-derived butanol: Stochastic approach," Applied Energy, Elsevier, vol. 297(C).
- Byun, Jaewon & Han, Jee-hoon, 2023. "Economic feasible hydrogen production system from carbohydrate-rich food waste," Applied Energy, Elsevier, vol. 340(C).
- Cho, Seong-Heon & Kim, Juyeon & Han, Jeehoon & Lee, Daewon & Kim, Hyung Ju & Kim, Yong Tae & Cheng, Xun & Xu, Ye & Lee, Jechan & Kwon, Eilhann E., 2019. "Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Jourdin, Ludovic & Sousa, João & Stralen, Niels van & Strik, David P.B.T.B., 2020. "Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: An interdisciplinary roadmap towards future research and application," Applied Energy, Elsevier, vol. 279(C).
- Daissy Lorena Restrepo-Serna & Jimmy Anderson Martínez-Ruano & Carlos Ariel Cardona-Alzate, 2018. "Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material," Energies, MDPI, vol. 11(12), pages 1-12, December.
- Kwon, Oseok & Kim, Juyeon & Han, Jeehoon, 2022. "Organic waste derived biodiesel supply chain network: Deterministic multi-period planning model," Applied Energy, Elsevier, vol. 305(C).
- Yang Mo Gu & Seon Young Park & Ji Yeon Park & Byoung-In Sang & Byoung Seong Jeon & Hyunook Kim & Jin Hyung Lee, 2021. "Impact of Attrition Ball-Mill on Characteristics and Biochemical Methane Potential of Food Waste," Energies, MDPI, vol. 14(8), pages 1-10, April.
- Byun, Jaewon & Han, Jeehoon, 2021. "Economically feasible production of green methane from vegetable and fruit-rich food waste," Energy, Elsevier, vol. 235(C).
- Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Sharma, Rozi & Malaviya, Piyush, 2023. "Ecosystem services and climate action from a circular bioeconomy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Kwon, Oseok & Han, Jeehoon, 2021. "Waste-to-bioethanol supply chain network: A deterministic model," Applied Energy, Elsevier, vol. 300(C).
- Pooja Dange & Soumya Pandit & Dipak Jadhav & Poojhaa Shanmugam & Piyush Kumar Gupta & Sanjay Kumar & Manu Kumar & Yung-Hun Yang & Shashi Kant Bhatia, 2021. "Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
- Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Ying, Zanyun & Qiu, Qianlinglin & Ye, Jiexu & Chen, Han & Zhao, Jingkai & Shen, Yao & Chu, Bei & Gao, Hanmin & Zhang, Shihan, 2024. "Mechanism, performance enhancement, and economic feasibility of CO2 microbial electrosynthesis systems: A data-driven analysis of research topics and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Dimitar Karakashev & Yifeng Zhang, 2018. "BioEnergy and BioChemicals Production from Biomass and Residual Resources," Energies, MDPI, vol. 11(8), pages 1-6, August.
- Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
- Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
- Guilherme Peixoto & Gustavo Mockaitis & Wojtyla Kmiecik Moreira & Daniel Moureira Fontes Lima & Marisa Aparecida de Lima & Filipe Vasconcelos Ferreira & Lucas Tadeu Fuess & Igor Polikarpov & Marcelo Z, 2023. "Acidogenesis of Pentose Liquor to Produce Biohydrogen and Organic Acids Integrated with 1G–2G Ethanol Production in Sugarcane Biorefineries," Waste, MDPI, vol. 1(3), pages 1-17, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun & Wei, Pengfei & Lin, Richen & Murphy, Jerry D., 2018. "Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios," Applied Energy, Elsevier, vol. 230(C), pages 1082-1092.
- Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
- Lopez-Hidalgo, Angel M. & Alvarado-Cuevas, Zazil D. & De Leon-Rodriguez, Antonio, 2018. "Biohydrogen production from mixtures of agro-industrial wastes: Chemometric analysis, optimization and scaling up," Energy, Elsevier, vol. 159(C), pages 32-41.
- Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
- Shuang Liu & Wenzhe Li & Guoxiang Zheng & Haiyan Yang & Longhai Li, 2020. "Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic Semi-Continuous Process," Energies, MDPI, vol. 13(15), pages 1-13, July.
- Jie Mei & Huize Chen & Qiang Liao & Abdul-Sattar Nizami & Ao Xia & Yun Huang & Xianqing Zhu & Xun Zhu, 2020. "Effects of Operational Parameters on Biofilm Formation of Mixed Bacteria for Hydrogen Fermentation," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
- Liang, Dandan & Zhang, Lijuan & He, Weihua & Li, Chao & Liu, Junfeng & Liu, Shaoqin & Lee, Hyung-Sool & Feng, Yujie, 2020. "Efficient hydrogen recovery with CoP-NF as cathode in microbial electrolysis cells," Applied Energy, Elsevier, vol. 264(C).
- Baeyens, Jan & Zhang, Huili & Nie, Jiapei & Appels, Lise & Dewil, Raf & Ansart, Renaud & Deng, Yimin, 2020. "Reviewing the potential of bio-hydrogen production by fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Castelló, Elena & Nunes Ferraz-Junior, Antonio Djalma & Andreani, Cristiane & Anzola-Rojas, Melida del Pilar & Borzacconi, Liliana & Buitrón, Germán & Carrillo-Reyes, Julián & Gomes, Simone Damasceno , 2020. "Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Jiraprasertwong, Achiraya & Maitriwong, Kiatchai & Chavadej, Sumaeth, 2019. "Production of biogas from cassava wastewater using a three-stage upflow anaerobic sludge blanket (UASB) reactor," Renewable Energy, Elsevier, vol. 130(C), pages 191-205.
- Vira Hovorukha & Olesia Havryliuk & Galina Gladka & Oleksandr Tashyrev & Antonina Kalinichenko & Monika Sporek & Agnieszka Dołhańczuk-Śródka, 2021. "Hydrogen Dark Fermentation for Degradation of Solid and Liquid Food Waste," Energies, MDPI, vol. 14(7), pages 1-12, March.
- Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
- Bakonyi, Péter & Buitrón, Germán & Valdez-Vazquez, Idania & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation," Applied Energy, Elsevier, vol. 190(C), pages 813-823.
- Cieciura-Włoch, Weronika & Borowski, Sebastian & Otlewska, Anna, 2020. "Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation," Renewable Energy, Elsevier, vol. 153(C), pages 1226-1237.
- Trad, Zaineb & Fontaine, Jean-Pierre & Larroche, Christian & Vial, Christophe, 2016. "Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation," Renewable Energy, Elsevier, vol. 98(C), pages 264-282.
- Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
- Lavagnolo, Maria Cristina & Girotto, Francesca & Rafieenia, Razieh & Danieli, Luciano & Alibardi, Luca, 2018. "Two-stage anaerobic digestion of the organic fraction of municipal solid waste – Effects of process conditions during batch tests," Renewable Energy, Elsevier, vol. 126(C), pages 14-20.
- Liu, Xinxin & Zhao, Junhui & He, Chao & Liu, Liang & Li, Gang & Pan, Xiaohui & Xu, Guizhuan & Lu, Chaoyang & Zhang, Quanguo & Jiao, Youzhou, 2023. "A new approach for evaluating photosynthetic bio-hydrogen production: The dissipation rate method," Energy, Elsevier, vol. 284(C).
- Ekwenna, Emeka Boniface & Tabraiz, Shamas & Wang, Yaodong & Roskilly, Anthony, 2023. "Exploring the feasibility of biological hydrogen production using seed sludge pretreated with agro-industrial wastes," Renewable Energy, Elsevier, vol. 215(C).
- Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
More about this item
Keywords
food waste; anaerobic digestion; lactic acid fermentation; dark fermentation; poly-lactic acid; butyric acid;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1551-:d:152402. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.