IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v202y2023icp942-951.html
   My bibliography  Save this article

Hybrid electron donors of ethanol and lactate stimulation chain elongation in microbial electrosynthesis with different inoculants

Author

Listed:
  • Zhang, Kang
  • Qiu, Zhenyu
  • Luo, Dan
  • Song, Tianshun
  • Xie, Jingjing

Abstract

Microbial electrosynthesis (MES) is a new technology that uses electrically driven biocatalysts to convert CO2 into valuable chemicals. However, C2 as the primary product limits the development of MES. To address this issue, ethanol and lactate as additional electron donor (ED) were introduced into MES systems with different inoculants (anaerobic sludge and sediment) for chain elongation. The hybrid EDs in MES with sediment can produce the highest concentrations of butyrate (6.30 g/L) and caproate (1.60 g/L), and the corresponding total electron recovery efficiency reached the maximum value (94.51 ± 1.04%). Hybrid EDs not only provided sufficient reducing force, but also enhanced the gas mass transfer rate by releasing CO2 from lactate in situ. Metagenomic analysis showed that reverse β-oxidation pathway and fatty acid biosynthesis pathway were the main pathways. This study demonstrated that the addition of ethanol and lactate is promising method for improving the performance of MES.

Suggested Citation

  • Zhang, Kang & Qiu, Zhenyu & Luo, Dan & Song, Tianshun & Xie, Jingjing, 2023. "Hybrid electron donors of ethanol and lactate stimulation chain elongation in microbial electrosynthesis with different inoculants," Renewable Energy, Elsevier, vol. 202(C), pages 942-951.
  • Handle: RePEc:eee:renene:v:202:y:2023:i:c:p:942-951
    DOI: 10.1016/j.renene.2022.11.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122017815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.11.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Izadi, Paniz & Fontmorin, Jean-Marie & Virdis, Bernardino & Head, Ian M. & Yu, Eileen H., 2021. "The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Liu & Yue Yin & Chuang Chen & Xuemeng Zhang & Jing Zhou & Qingran Zhang & Yinguang Chen, 2023. "Advances in Electricity-Steering Organic Waste Bio-Valorization for Medium Chain Carboxylic Acids Production," Energies, MDPI, vol. 16(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:202:y:2023:i:c:p:942-951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.