IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26509-z.html
   My bibliography  Save this article

Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures

Author

Listed:
  • Yang Ou

    (Pacific Northwest National Laboratory)

  • Christopher Roney

    (Pacific Northwest National Laboratory
    Electric Power Research Institute)

  • Jameel Alsalam

    (U.S. Environmental Protection Agency)

  • Katherine Calvin

    (Pacific Northwest National Laboratory)

  • Jared Creason

    (U.S. Environmental Protection Agency)

  • Jae Edmonds

    (Pacific Northwest National Laboratory)

  • Allen A. Fawcett

    (U.S. Environmental Protection Agency)

  • Page Kyle

    (Pacific Northwest National Laboratory)

  • Kanishka Narayan

    (Pacific Northwest National Laboratory)

  • Patrick O’Rourke

    (Pacific Northwest National Laboratory)

  • Pralit Patel

    (Pacific Northwest National Laboratory)

  • Shaun Ragnauth

    (U.S. Environmental Protection Agency)

  • Steven J. Smith

    (Pacific Northwest National Laboratory)

  • Haewon McJeon

    (Pacific Northwest National Laboratory)

Abstract

Stabilizing climate change well below 2 °C and towards 1.5 °C requires comprehensive mitigation of all greenhouse gases (GHG), including both CO2 and non-CO2 GHG emissions. Here we incorporate the latest global non-CO2 emissions and mitigation data into a state-of-the-art integrated assessment model GCAM and examine 90 mitigation scenarios pairing different levels of CO2 and non-CO2 GHG abatement pathways. We estimate that when non-CO2 mitigation contributions are not fully implemented, the timing of net-zero CO2 must occur about two decades earlier. Conversely, comprehensive GHG abatement that fully integrates non-CO2 mitigation measures in addition to a net-zero CO2 commitment can help achieve 1.5 °C stabilization. While decarbonization-driven fuel switching mainly reduces non-CO2 emissions from fuel extraction and end use, targeted non-CO2 mitigation measures can significantly reduce fluorinated gas emissions from industrial processes and cooling sectors. Our integrated modeling provides direct insights in how system-wide all GHG mitigation can affect the timing of net-zero CO2 for 1.5 °C and 2 °C climate change scenarios.

Suggested Citation

  • Yang Ou & Christopher Roney & Jameel Alsalam & Katherine Calvin & Jared Creason & Jae Edmonds & Allen A. Fawcett & Page Kyle & Kanishka Narayan & Patrick O’Rourke & Pralit Patel & Shaun Ragnauth & Ste, 2021. "Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26509-z
    DOI: 10.1038/s41467-021-26509-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26509-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26509-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathan E. Hultman & Leon Clarke & Carla Frisch & Kevin Kennedy & Haewon McJeon & Tom Cyrs & Pete Hansel & Paul Bodnar & Michelle Manion & Morgan R. Edwards & Ryna Cui & Christina Bowman & Jessie Lund , 2020. "Fusing subnational with national climate action is central to decarbonization: the case of the United States," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. S. A. Montzka & E. J. Dlugokencky & J. H. Butler, 2011. "Non-CO2 greenhouse gases and climate change," Nature, Nature, vol. 476(7358), pages 43-50, August.
    3. D. P. van Vuuren & Kaj-Ivar Wijst & Stijn Marsman & Maarten Berg & Andries F. Hof & Chris D. Jones, 2020. "The costs of achieving climate targets and the sources of uncertainty," Nature Climate Change, Nature, vol. 10(4), pages 329-334, April.
    4. Detlef P. van Vuuren & Elke Stehfest & David E. H. J. Gernaat & Maarten Berg & David L. Bijl & Harmen Sytze Boer & Vassilis Daioglou & Jonathan C. Doelman & Oreane Y. Edelenbosch & Mathijs Harmsen & A, 2018. "Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies," Nature Climate Change, Nature, vol. 8(5), pages 391-397, May.
    5. Joeri Rogelj & Piers M. Forster & Elmar Kriegler & Christopher J. Smith & Roland Séférian, 2019. "Estimating and tracking the remaining carbon budget for stringent climate targets," Nature, Nature, vol. 571(7765), pages 335-342, July.
    6. Katarzyna B. Tokarska & Nathan P. Gillett, 2018. "Cumulative carbon emissions budgets consistent with 1.5 °C global warming," Nature Climate Change, Nature, vol. 8(4), pages 296-299, April.
    7. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    8. Bo Fu & Thomas Gasser & Bengang Li & Shu Tao & Philippe Ciais & Shilong Piao & Yves Balkanski & Wei Li & Tianya Yin & Luchao Han & Xinyue Li & Yunman Han & Jie An & Siyuan Peng & Jing Xu, 2020. "Short-lived climate forcers have long-term climate impacts via the carbon–climate feedback," Nature Climate Change, Nature, vol. 10(9), pages 851-855, September.
    9. Noah Kaufman & Alexander R. Barron & Wojciech Krawczyk & Peter Marsters & Haewon McJeon, 2020. "A near-term to net zero alternative to the social cost of carbon for setting carbon prices," Nature Climate Change, Nature, vol. 10(11), pages 1010-1014, November.
    10. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    11. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    12. Joeri Rogelj & Michiel Schaeffer & Pierre Friedlingstein & Nathan P. Gillett & Detlef P. van Vuuren & Keywan Riahi & Myles Allen & Reto Knutti, 2016. "Differences between carbon budget estimates unravelled," Nature Climate Change, Nature, vol. 6(3), pages 245-252, March.
    13. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhaohua & Li, Jingyun & Wang, Bo & Hui, Ng Szu & Lu, Bin & Wang, Can & Xu, Shuling & Zhou, Zixuan & Zhang, Bin & Zheng, Yufeng, 2024. "The decarbonization pathway of power system by high-resolution model under different policy scenarios in China," Applied Energy, Elsevier, vol. 355(C).
    2. Paulus, N., 2024. "Developing individual carbon footprint reduction pathways from carbon budgets: Examples with Wallonia and France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    3. Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).
    4. Graham, Neal T. & Gakkhar, Nikhil & Singh, Akash Deep & Evans, Meredydd & Stelmach, Tanner & Durga, Siddarth & Godara, Rakesh & Gajera, Bhautik & Wise, Marshall & Sarma, Anil K., 2022. "Integrated analysis of increased bioenergy futures in India," Energy Policy, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Bryan K. Mignone & Leon Clarke & James A. Edmonds & Angelo Gurgel & Howard J. Herzog & Jeremiah X. Johnson & Dharik S. Mallapragada & Haewon McJeon & Jennifer Morris & Patrick R. O’Rourke & Sergey Pal, 2024. "Drivers and implications of alternative routes to fuels decarbonization in net-zero energy systems," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Nicoletta Brazzola & Jan Wohland & Anthony Patt, 2021. "Offsetting unabated agricultural emissions with CO2 removal to achieve ambitious climate targets," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
    6. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    7. Stefan Frank & Petr Havlík & Elke Stehfest & Hans Meijl & Peter Witzke & Ignacio Pérez-Domínguez & Michiel Dijk & Jonathan C. Doelman & Thomas Fellmann & Jason F. L. Koopman & Andrzej Tabeau & Hugo Va, 2019. "Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target," Nature Climate Change, Nature, vol. 9(1), pages 66-72, January.
    8. J.-F. Mercure & P. Salas & P. Vercoulen & G. Semieniuk & A. Lam & H. Pollitt & P. B. Holden & N. Vakilifard & U. Chewpreecha & N. R. Edwards & J. E. Vinuales, 2021. "Reframing incentives for climate policy action," Nature Energy, Nature, vol. 6(12), pages 1133-1143, December.
    9. Sandy Avrutin & Philip Goodwin & Thomas H. G. Ezard, 2023. "Assessing the remaining carbon budget through the lens of policy-driven acidification and temperature targets," Climatic Change, Springer, vol. 176(9), pages 1-18, September.
    10. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    11. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    13. Oluwatoyin J. Gbadeyan & Joseph Muthivhi & Linda Z. Linganiso & Nirmala Deenadayalu, 2024. "Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review," Clean Technol., MDPI, vol. 6(3), pages 1-38, August.
    14. Jie Ma & Amos Oppong & Kingsley Nketia Acheampong & Lucille Aba Abruquah, 2018. "Forecasting Renewable Energy Consumption under Zero Assumptions," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    15. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    16. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    18. John E. T. Bistline & Geoffrey Blanford & John Grant & Eladio Knipping & David L. McCollum & Uarporn Nopmongcol & Heidi Scarth & Tejas Shah & Greg Yarwood, 2022. "Economy-wide evaluation of CO2 and air quality impacts of electrification in the United States," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Yu Liu & Mingxi Du & Qi Cui & Jintai Lin & Yawen Liu & Qiuyu Liu & Dan Tong & Kuishuang Feng & Klaus Hubacek, 2022. "Contrasting suitability and ambition in regional carbon mitigation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Shu, David Yang & Deutz, Sarah & Winter, Benedikt Alexander & Baumgärtner, Nils & Leenders, Ludger & Bardow, André, 2023. "The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26509-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.