IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v161y2022ics030142152100625x.html
   My bibliography  Save this article

Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece

Author

Listed:
  • Koasidis, Konstantinos
  • Marinakis, Vangelis
  • Nikas, Alexandros
  • Chira, Katerina
  • Flamos, Alexandros
  • Doukas, Haris

Abstract

Energy efficiency from behavioural changes will play a key role in meeting future climate targets. Current energy management actions, however, are still dominated by conventional interventions. Furthermore, demand-side transformations based on behavioural actions are hitherto underrepresented in modelling scenarios informing climate policy. In this context, this study aims to explore whether monetisation of behavioural change should be considered as a policy measure to support energy management in the residential sector. To address this question, ATOM, an energy efficiency reward mechanism based on a digital energy currency, is linked with the Dynamic high-Resolution dEmand-sidE Management model, a bottom-up agent-based model designed to simulate buildings’ energy consumption. A case study in the Greek residential sector, implementing an energy management action associated with manual adjustments of a thermostat, showcases potential for achieving a nation-wide and household-level energy reduction of 5.3% and 10% respectively, with monetisation providing an additional €200 to each engaged household on average. We highlight that monetisation of behavioural change should be considered as a promising policy, since the reward provides an adequate incentive for end-users to actively reduce consumption, and its implementation enables the quantification of behavioural change in monetary units, rendering social aspects easier to integrate in models.

Suggested Citation

  • Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:enepol:v:161:y:2022:i:c:s030142152100625x
    DOI: 10.1016/j.enpol.2021.112759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152100625X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    2. Thomas, Samuel & Rosenow, Jan, 2020. "Drivers of increasing energy consumption in Europe and policy implications," Energy Policy, Elsevier, vol. 137(C).
    3. Azarova, Valeriya & Cohen, Jed J. & Kollmann, Andrea & Reichl, Johannes, 2020. "Reducing household electricity consumption during evening peak demand times: Evidence from a field experiment," Energy Policy, Elsevier, vol. 144(C).
    4. Meng, Sam & Siriwardana, Mahinda & McNeill, Judith & Nelson, Tim, 2018. "The impact of an ETS on the Australian energy sector: An integrated CGE and electricity modelling approach," Energy Economics, Elsevier, vol. 69(C), pages 213-224.
    5. Karlo Hainsch & Hanna Brauers & Thorsten Burandt & Leonard Göke & Christian von Hirschhausen & Claudia Kemfert & Mario Kendziorski & Konstantin Löffler & Pao-Yu Oei & Fabian Präger & Ben Wealer, 2020. "Make the European Green Deal Real – Combining Climate Neutrality and Economic Recovery," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 127, number pbk153.
    6. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    7. Sovacool, Benjamin K. & Kivimaa, Paula & Hielscher, Sabine & Jenkins, Kirsten, 2017. "Vulnerability and resistance in the United Kingdom's smart meter transition," Energy Policy, Elsevier, vol. 109(C), pages 767-781.
    8. Blind, Knut & Petersen, Sören S. & Riillo, Cesare A.F., 2017. "The impact of standards and regulation on innovation in uncertain markets," Research Policy, Elsevier, vol. 46(1), pages 249-264.
    9. Broad, Oliver & Hawker, Graeme & Dodds, Paul E., 2020. "Decarbonising the UK residential sector: The dependence of national abatement on flexible and local views of the future," Energy Policy, Elsevier, vol. 140(C).
    10. Claus Dierksmeier & Peter Seele, 2018. "Cryptocurrencies and Business Ethics," Journal of Business Ethics, Springer, vol. 152(1), pages 1-14, September.
    11. Leila Niamir & Gregor Kiesewetter & Fabian Wagner & Wolfgang Schöpp & Tatiana Filatova & Alexey Voinov & Hans Bressers, 2020. "Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions," Climatic Change, Springer, vol. 158(2), pages 141-160, January.
    12. Mark Sommer & Kurt Kratena, 2020. "Consumption and production-based CO2 pricing policies: macroeconomic trade-offs and carbon leakage," Economic Systems Research, Taylor & Francis Journals, vol. 32(1), pages 29-57, January.
    13. Henry, Marisa L. & Ferraro, Paul J. & Kontoleon, Andreas, 2019. "The behavioural effect of electronic home energy reports: Evidence from a randomised field trial in the United States," Energy Policy, Elsevier, vol. 132(C), pages 1256-1261.
    14. Napp, T.A. & Few, S. & Sood, A. & Bernie, D. & Hawkes, A. & Gambhir, A., 2019. "The role of advanced demand-sector technologies and energy demand reduction in achieving ambitious carbon budgets," Applied Energy, Elsevier, vol. 238(C), pages 351-367.
    15. Dirk-Jan van de Ven & Mikel González-Eguino & Iñaki Arto, 2018. "The potential of behavioural change for climate change mitigation: a case study for the European Union," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 853-886, August.
    16. Detlef P. van Vuuren & Elke Stehfest & David E. H. J. Gernaat & Maarten Berg & David L. Bijl & Harmen Sytze Boer & Vassilis Daioglou & Jonathan C. Doelman & Oreane Y. Edelenbosch & Mathijs Harmsen & A, 2018. "Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies," Nature Climate Change, Nature, vol. 8(5), pages 391-397, May.
    17. Grégory Claeys & Simone Tagliapietra & Georg Zachmann, 2019. "How to make the European Green Deal work," Policy Contributions 33125, Bruegel.
    18. Arnulf Grubler & Charlie Wilson & Nuno Bento & Benigna Boza-Kiss & Volker Krey & David L. McCollum & Narasimha D. Rao & Keywan Riahi & Joeri Rogelj & Simon Stercke & Jonathan Cullen & Stefan Frank & O, 2018. "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies," Nature Energy, Nature, vol. 3(6), pages 515-527, June.
    19. Spyridaki, Niki-Artemis & Stavrakas, Vassilis & Dendramis, Yiannis & Flamos, Alexandros, 2020. "Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector," Energy Policy, Elsevier, vol. 140(C).
    20. Benjamin K. Sovacool, 2014. "Diversity: Energy studies need social science," Nature, Nature, vol. 511(7511), pages 529-530, July.
    21. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    22. Carolina Grottera & Emilio Lèbre La Rovere & William Wills & Amaro Olímpio Pereira Jr, 2020. "The role of lifestyle changes in low-emissions development strategies: an economy-wide assessment for Brazil," Climate Policy, Taylor & Francis Journals, vol. 20(2), pages 217-233, February.
    23. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    24. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    25. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    26. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    27. Miguel Poblete-Cazenave & Shonali Pachauri & Edward Byers & Alessio Mastrucci & Bas Ruijven, 2021. "Global scenarios of household access to modern energy services under climate mitigation policy," Nature Energy, Nature, vol. 6(8), pages 824-833, August.
    28. Johnson, Daniel & Horton, Ella & Mulcahy, Rory & Foth, Marcus, 2017. "Gamification and serious games within the domain of domestic energy consumption: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 249-264.
    29. Stephanie Roe & Charlotte Streck & Michael Obersteiner & Stefan Frank & Bronson Griscom & Laurent Drouet & Oliver Fricko & Mykola Gusti & Nancy Harris & Tomoko Hasegawa & Zeke Hausfather & Petr Havlík, 2019. "Contribution of the land sector to a 1.5 °C world," Nature Climate Change, Nature, vol. 9(11), pages 817-828, November.
    30. Koichiro Ito, 2015. "Asymmetric Incentives in Subsidies: Evidence from a Large-Scale Electricity Rebate Program," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 209-237, August.
    31. Ponce de Leon Barido, Diego & Suffian, Stephen & Kammen, Daniel M. & Callaway, Duncan, 2018. "Opportunities for behavioral energy efficiency and flexible demand in data-limited low-carbon resource constrained environments," Applied Energy, Elsevier, vol. 228(C), pages 512-523.
    32. Bastida, Leire & Cohen, Jed J. & Kollmann, Andrea & Moya, Ana & Reichl, Johannes, 2019. "Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 455-462.
    33. Azarova, Valeriya & Cohen, Jed J. & Kollmann, Andrea & Reichl, Johannes, 2020. "Reducing household electricity consumption during evening peak demand times: Evidence from a field experiment," Munich Reprints in Economics 84731, University of Munich, Department of Economics.
    34. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    35. Sgouridis, Sgouris & Kennedy, Scott, 2010. "Tangible and fungible energy: Hybrid energy market and currency system for total energy management. A Masdar City case study," Energy Policy, Elsevier, vol. 38(4), pages 1749-1758, April.
    36. Levesque, Antoine & Pietzcker, Robert C. & Luderer, Gunnar, 2019. "Halving energy demand from buildings: The impact of low consumption practices," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 253-266.
    37. Baldini, Mattia & Trivella, Alessio & Wente, Jordan William, 2018. "The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark," Energy Policy, Elsevier, vol. 120(C), pages 503-513.
    38. Alberts, Genevieve & Gurguc, Zeynep & Koutroumpis, Pantelis & Martin, Ralf & Muûls, Mirabelle & Napp, Tamaryn, 2016. "Competition and norms: A self-defeating combination?," Energy Policy, Elsevier, vol. 96(C), pages 504-523.
    39. Aydin, Erdal & Correa, Santiago Bohórquez & Brounen, Dirk, 2019. "Energy performance certification and time on the market," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    40. Forouli, Aikaterini & Gkonis, Nikolaos & Nikas, Alexandros & Siskos, Eleftherios & Doukas, Haris & Tourkolias, Christos, 2019. "Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets," Energy, Elsevier, vol. 170(C), pages 818-831.
    41. Nelson, Tim & McCracken-Hewson, Eleanor & Sundstrom, Gabby & Hawthorne, Marianne, 2019. "The drivers of energy-related financial hardship in Australia – understanding the role of income, consumption and housing," Energy Policy, Elsevier, vol. 124(C), pages 262-271.
    42. Sławomir Bielecki & Tadeusz Skoczkowski & Lidia Sobczak & Janusz Buchoski & Łukasz Maciąg & Piotr Dukat, 2021. "Impact of the Lockdown during the COVID-19 Pandemic on Electricity Use by Residential Users," Energies, MDPI, vol. 14(4), pages 1-32, February.
    43. Neil Grant & Adam Hawkes & Tamaryn Napp & Ajay Gambhir, 2020. "The appropriate use of reference scenarios in mitigation analysis," Nature Climate Change, Nature, vol. 10(7), pages 605-610, July.
    44. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    45. Hof, Andries F. & Carrara, Samuel & De Cian, Enrica & Pfluger, Benjamin & van Sluisveld, Mariësse A.E. & de Boer, Harmen Sytze & van Vuuren, Detlef P., 2020. "From global to national scenarios: Bridging different models to explore power generation decarbonisation based on insights from socio-technical transition case studies," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalina, Jacek, 2023. "The quest for game changers - Review of new trends and innovations in the design of large-scale energy systems," Energy, Elsevier, vol. 277(C).
    2. Frilingou, Natasha & Koasidis, Konstantinos & Spyridaki, Niki-Artemis & Nikas, Alexandros & Marinakis, Vangelis & Doukas, Haris, 2024. "Is it feasible to implement minimum energy performance standards (MEPS) for existing buildings in Greece? A cost-benefit evaluation," Energy Policy, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    2. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    4. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.
    5. Diamantis Koutsandreas & Evangelos Spiliotis & Haris Doukas & John Psarras, 2021. "What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece," Energies, MDPI, vol. 14(8), pages 1-19, April.
    6. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    7. Mehdi Montakhabi & Ine Van Zeeland & Pieter Ballon, 2022. "Barriers for Prosumers’ Open Business Models: A Resource-Based View on Assets and Data-Sharing in Electricity Markets," Sustainability, MDPI, vol. 14(9), pages 1-29, May.
    8. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    9. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Bradley S. Jorgensen & Sarah Fumei & Graeme Byrne, 2021. "Reducing Peak Energy Demand among Residents Who Are Not Billed for Their Electricity Consumption: Experimental Evaluation of Behaviour Change Interventions in a University Setting," IJERPH, MDPI, vol. 18(16), pages 1-16, August.
    11. Johnson, Elliott & Betts-Davies, Sam & Barrett, John, 2023. "Comparative analysis of UK net-zero scenarios: The role of energy demand reduction," Energy Policy, Elsevier, vol. 179(C).
    12. Spandagos, Constantine & Baark, Erik & Ng, Tze Ling & Yarime, Masaru, 2021. "Social influence and economic intervention policies to save energy at home: Critical questions for the new decade and evidence from air-condition use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Ableitner, Liliane & Tiefenbeck, Verena & Meeuw, Arne & Wörner, Anselma & Fleisch, Elgar & Wortmann, Felix, 2020. "User behavior in a real-world peer-to-peer electricity market," Applied Energy, Elsevier, vol. 270(C).
    14. Alessio Mastrucci & Bas Ruijven & Edward Byers & Miguel Poblete-Cazenave & Shonali Pachauri, 2021. "Global scenarios of residential heating and cooling energy demand and CO2 emissions," Climatic Change, Springer, vol. 168(3), pages 1-26, October.
    15. Koasidis, Konstantinos & Nikas, Alexandros & Van de Ven, Dirk-Jan & Xexakis, Georgios & Forouli, Aikaterini & Mittal, Shivika & Gambhir, Ajay & Koutsellis, Themistoklis & Doukas, Haris, 2022. "Towards a green recovery in the EU: Aligning further emissions reductions with short- and long-term energy-sector employment gains," Energy Policy, Elsevier, vol. 171(C).
    16. Kobashi, Takuro & Yoshida, Takahiro & Yamagata, Yoshiki & Naito, Katsuhiko & Pfenninger, Stefan & Say, Kelvin & Takeda, Yasuhiro & Ahl, Amanda & Yarime, Masaru & Hara, Keishiro, 2020. "On the potential of “Photovoltaics + Electric vehicles” for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations," Applied Energy, Elsevier, vol. 275(C).
    17. Barry Hayes & Dorota Kamrowska-Zaluska & Aleksandar Petrovski & Cristina Jiménez-Pulido, 2021. "State of the Art in Open Platforms for Collaborative Urban Design and Sharing of Resources in Districts and Cities," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    18. Matteo Vaccargiu & Andrea Pinna & Roberto Tonelli & Luisanna Cocco, 2023. "Blockchain in the Energy Sector for SDG Achievement," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    19. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    20. Mukherjee, Monish & Hardy, Trevor & Fuller, Jason C. & Bose, Anjan, 2022. "Implementing multi-settlement decentralized electricity market design for transactive communities with imperfect communication," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:161:y:2022:i:c:s030142152100625x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.