IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p132-d710947.html
   My bibliography  Save this article

Using Decomposition Analysis to Determine the Main Contributing Factors to Carbon Neutrality across Sectors

Author

Listed:
  • Hsing-Hsuan Chen

    (PBL Netherlands Environmental Assessment Agency, 2594 AB The Hague, The Netherlands)

  • Andries F. Hof

    (PBL Netherlands Environmental Assessment Agency, 2594 AB The Hague, The Netherlands
    Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands)

  • Vassilis Daioglou

    (PBL Netherlands Environmental Assessment Agency, 2594 AB The Hague, The Netherlands
    Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands)

  • Harmen Sytze de Boer

    (PBL Netherlands Environmental Assessment Agency, 2594 AB The Hague, The Netherlands)

  • Oreane Y. Edelenbosch

    (Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands)

  • Maarten van den Berg

    (PBL Netherlands Environmental Assessment Agency, 2594 AB The Hague, The Netherlands)

  • Kaj-Ivar van der Wijst

    (PBL Netherlands Environmental Assessment Agency, 2594 AB The Hague, The Netherlands)

  • Detlef P. van Vuuren

    (PBL Netherlands Environmental Assessment Agency, 2594 AB The Hague, The Netherlands
    Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands)

Abstract

This paper uses decomposition analysis to investigate the key contributions to changes in greenhouse gas emissions in different scenarios. We derive decomposition formulas for the three highest-emitting sectors: power generation, industry, and transportation (both passenger and freight). These formulas were applied to recently developed 1.5 °C emission scenarios by the Integrated Model to Assess the Global Environment (IMAGE), emphasising the role of renewables and lifestyle changes. The decomposition analysis shows that carbon capture and storage (CCS), both from fossil fuel and bioenergy burning, renewables and reducing carbon intensity provide the largest contributions to emission reduction in the scenarios. Efficiency improvement is also critical, but part of the potential is already achieved in the Baseline scenario. The relative importance of different emission reduction drivers is similar in the OECD (characterised by relatively high per capita income levels and emissions) and non-OECD (characterised by relatively high carbon intensities of the economy) region, but there are some noteworthy differences. In the non-OECD region, improving efficiency in industry and transport and increasing the share of renewables in power generation are more important in reducing emissions than in the OECD region, while CCS in power generation and electrification of passenger transport are more important drivers in the OECD region.

Suggested Citation

  • Hsing-Hsuan Chen & Andries F. Hof & Vassilis Daioglou & Harmen Sytze de Boer & Oreane Y. Edelenbosch & Maarten van den Berg & Kaj-Ivar van der Wijst & Detlef P. van Vuuren, 2021. "Using Decomposition Analysis to Determine the Main Contributing Factors to Carbon Neutrality across Sectors," Energies, MDPI, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:132-:d:710947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Corinne Le Quéré & Jan Ivar Korsbakken & Charlie Wilson & Jale Tosun & Robbie Andrew & Robert J. Andres & Josep G. Canadell & Andrew Jordan & Glen P. Peters & Detlef P. van Vuuren, 2019. "Drivers of declining CO2 emissions in 18 developed economies," Nature Climate Change, Nature, vol. 9(3), pages 213-217, March.
    2. Detlef P. van Vuuren & Elke Stehfest & David E. H. J. Gernaat & Maarten Berg & David L. Bijl & Harmen Sytze Boer & Vassilis Daioglou & Jonathan C. Doelman & Oreane Y. Edelenbosch & Mathijs Harmsen & A, 2018. "Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies," Nature Climate Change, Nature, vol. 8(5), pages 391-397, May.
    3. G. Marangoni & M. Tavoni & V. Bosetti & E. Borgonovo & P. Capros & O. Fricko & D. E. H. J. Gernaat & C. Guivarch & P. Havlik & D. Huppmann & N. Johnson & P. Karkatsoulis & I. Keppo & V. Krey & E. Ó Br, 2017. "Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways," Nature Climate Change, Nature, vol. 7(2), pages 113-117, February.
    4. Edelenbosch, O.Y. & van Vuuren, D.P. & Blok, K. & Calvin, K. & Fujimori, S., 2020. "Mitigating energy demand sector emissions: The integrated modelling perspective," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Jakob & William F. Lamb & Jan Christoph Steckel & Christian Flachsland & Ottmar Edenhofer, 2020. "Understanding different perspectives on economic growth and climate policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(6), November.
    2. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    3. Michel Noussan & Matteo Jarre, 2021. "Assessing Commuting Energy and Emissions Savings through Remote Working and Carpooling: Lessons from an Italian Region," Energies, MDPI, vol. 14(21), pages 1-19, November.
    4. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    5. Yasunori Ito & Hidemichi Fujii, 2024. "Trend Changes and the Driving Forces of Environmental Indicators in Countries Worldwide: A Structural Change Analysis of Variations in CO 2 Emissions and Eco-Efficiency," Sustainability, MDPI, vol. 16(12), pages 1-16, June.
    6. Lili Sun & Huijuan Cui & Quansheng Ge, 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries," Energies, MDPI, vol. 14(17), pages 1-21, September.
    7. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Francesco Gangi & Eugenio D'Angelo & Lucia Michela Daniele & Nicola Varrone, 2021. "Assessing the impact of socially responsible human resources management on company environmental performance and cost of debt," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(5), pages 1511-1527, September.
    9. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Apr 2024.
    10. Mauricio Marrone & Martina K Linnenluecke, 2020. "Interdisciplinary Research Maps: A new technique for visualizing research topics," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.
    11. Bjørnar Karlsen Kivedal, 2023. "Long run non-linearity in CO2 emissions: the I(2) cointegration model and the environmental Kuznets curve," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(4), pages 899-931, November.
    12. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    13. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).
    14. Aldy Darwili & Enno Schröder, 2023. "On the Interpretation and Measurement of Technology-Adjusted Emissions Embodied in Trade," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 65-98, January.
    15. Mumbunan, Sonny & Maitri, Ni Made Rahayu, 2022. "A Review of Basic Income for Nature and Climate," OSF Preprints bre43, Center for Open Science.
    16. Anqi Zeng & Wu Chen & Kasper Dalgas Rasmussen & Xuehong Zhu & Maren Lundhaug & Daniel B. Müller & Juan Tan & Jakob K. Keiding & Litao Liu & Tao Dai & Anjian Wang & Gang Liu, 2022. "Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    19. Vivien Fisch-Romito & Céline Guivarch, 2019. "Transportation infrastructures in a low carbon world: An evaluation of investment needs and their determinants," Post-Print hal-02131954, HAL.
    20. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:132-:d:710947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.