IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224030007.html
   My bibliography  Save this article

Potential assessment and development obstacle analysis of CCUS layout in China: A combined interpretive model based on GIS-DEMATEL-ISM

Author

Listed:
  • Zhou, Jianli
  • Chen, Zhuohao
  • Wu, Shuxian
  • Yang, Cheng
  • Wang, Yaqi
  • Wu, Yunna

Abstract

Although carbon capture, utilization, and storage (CCUS) has enormous emission reduction potential and application prospects, it still faces many obstacles and challenges in the actual deployment and promotion process. This study aims to evaluate the spatial suitability of the CCUS layout comprehensively and deeply analyze key development obstacles to provide a scientific basis for the promotion and layout of CCUS. Therefore, this article constructs a combination of Geographic Information Systems (GIS), Decision-making trial and evaluation laboratory (DEMATEL) method, and Interpretive structure model (ISM). Firstly, a comprehensive evaluation is conducted on the suitability of the CCUS layout in China based on GIS technology, identifying high-potential areas. The results indicate that when the threshold is 80 % of the highest score for suitability, a total area of 1.46 million square kilometers is suitable for the CCUS project layout. When it dropped to 60 %, this data increased to 2.04 million square kilometers. These areas are mainly distributed in large basin areas with abundant resources. Secondly, the DEMATEL-ISM analysis framework is improved to systematically identify and analyze the key obstacles that constrain the promotion of CCUS in China. The results indicate that there is a very complex relationship between the obstacles that constrain the development of CCUS, with the fundamental reasons being the lagging technological level and imperfect policies and regulations. Finally, goal-oriented suggestions and response measures were proposed, and targeted analysis was conducted on high-suitability areas. This study constructed an interdisciplinary methodology interpretive model to provide decision support for the CCUS layout and targeted strategies to break through current development barriers and promote the rapid development of CCUS.

Suggested Citation

  • Zhou, Jianli & Chen, Zhuohao & Wu, Shuxian & Yang, Cheng & Wang, Yaqi & Wu, Yunna, 2024. "Potential assessment and development obstacle analysis of CCUS layout in China: A combined interpretive model based on GIS-DEMATEL-ISM," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030007
    DOI: 10.1016/j.energy.2024.133225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Xing & Zhong, Ping & Zhang, Xian & Zhu, Lei, 2018. "Business model design for the carbon capture utilization and storage (CCUS) project in China," Energy Policy, Elsevier, vol. 121(C), pages 519-533.
    2. Wang, Xintong & Xue, Jingguo & Hou, Xueliang, 2023. "Barriers analysis to Chinese waste photovoltaic module recycling under the background of "double carbon"," Renewable Energy, Elsevier, vol. 214(C), pages 39-54.
    3. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    4. Zhang, Qi & Liu, Jiangfeng & Wang, Ge & Gao, Zhihui, 2024. "A new optimization model for carbon capture utilization and storage (CCUS) layout based on high-resolution geological variability," Applied Energy, Elsevier, vol. 363(C).
    5. Luo, Chao & Ju, Yanbing & Santibanez Gonzalez, Ernesto D.R. & Dong, Peiwu & Wang, Aihua, 2020. "The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China," Energy, Elsevier, vol. 211(C).
    6. Liu, Jiangfeng & Zhang, Qi & Li, Hailong & Chen, Siyuan & Teng, Fei, 2022. "Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect," Applied Energy, Elsevier, vol. 322(C).
    7. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    8. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    9. Zhou, Jianli & Liu, Dandan & Sha, Ru & Sun, Jingbing & Wang, Yubao & Wu, Yunna, 2024. "Geospatial simulation and decision optimization towards identifying the layout suitability and priority for wind-photovoltaic-hydrogen-ammonia project: An empirical study in China," Energy, Elsevier, vol. 286(C).
    10. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Sun, Lili & Liu, Qiang & Chen, Hongju & Yu, Hang & Li, Ling & Li, Lintao & Li, Yanzun & Adenutsi, Caspar Daniel, 2024. "Source-sink matching and cost analysis of offshore carbon capture, utilization, and storage in China," Energy, Elsevier, vol. 291(C).
    12. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    13. Chen, Zheng-Ao & Li, Qi & Liu, Lan-Cui & Zhang, Xian & Kuang, Liping & Jia, Li & Liu, Guizhen, 2015. "A large national survey of public perceptions of CCS technology in China," Applied Energy, Elsevier, vol. 158(C), pages 366-377.
    14. Sun, Yonghe & Huang, Zihang & Chi, Fudong, 2023. "Analysis of systemic factors affecting carbon reduction in Chinese energy-intensive industries: A dual-driven DEMATEL model," Energy, Elsevier, vol. 285(C).
    15. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    16. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Gao, Xinyuan & Yang, Shenglai & Tian, Lerao & Shen, Bin & Bi, Lufei & Zhang, Yiqi & Wang, Mengyu & Rui, Zhenhua, 2024. "System and multi-physics coupling model of liquid-CO2 injection on CO2 storage with enhanced gas recovery (CSEGR) framework," Energy, Elsevier, vol. 294(C).
    18. Wu, Yunna & Liu, Fangtong & He, Jiaming & Wu, Man & Ke, Yiming, 2021. "Obstacle identification, analysis and solutions of hydrogen fuel cell vehicles for application in China under the carbon neutrality target," Energy Policy, Elsevier, vol. 159(C).
    19. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Liang, Xi & Sun, Yan & Angus, Daniel, 2020. "China's carbon capture, utilization and storage (CCUS) policy: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Kawai, Eiji & Ozawa, Akito & Leibowicz, Benjamin D., 2022. "Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan," Applied Energy, Elsevier, vol. 328(C).
    21. Xu, Ye & Li, Ye & Zheng, Lijun & Cui, Liang & Li, Sha & Li, Wei & Cai, Yanpeng, 2020. "Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China," Energy, Elsevier, vol. 207(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Bo & Fan, Boyang & Wu, Chun & Xie, Jingdong, 2024. "Exploring incentive mechanisms for the CCUS project in China's coal-fired power plants: An option-game approach," Energy, Elsevier, vol. 288(C).
    2. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    4. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Hu, Guoping, 2022. "Print media representations of carbon capture utilization and storage (CCUS) technology in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Fan, Jing-Li & Li, Zezheng & Ding, Zixia & Li, Kai & Zhang, Xian, 2023. "Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models," Energy Economics, Elsevier, vol. 126(C).
    6. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Wang, Yihan & Wen, Zongguo & Xu, Mao & Kosajan, Vorada, 2024. "The carbon-energy-water nexus of the carbon capture, utilization, and storage technology deployment schemes: A case study in China's cement industry," Applied Energy, Elsevier, vol. 362(C).
    8. Liu, Bingsheng & Liu, Song & Xue, Bin & Lu, Shijian & Yang, Yang, 2021. "Formalizing an integrated decision-making model for the risk assessment of carbon capture, utilization, and storage projects: From a sustainability perspective," Applied Energy, Elsevier, vol. 303(C).
    9. Liu, Zhe & Zhu, Houle & Wilson, Jeffrey & Adams, Michelle & Walker, Tony R. & Xu, Yueying & Tang, Yu & Wang, Ziyu & Liu, Tongtong & Chen, Qinghua, 2024. "Achieving China's ‘double carbon goals’, an analysis of the potential and cost of carbon capture in the resource-based area: Northwestern China," Energy, Elsevier, vol. 292(C).
    10. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
    12. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    13. Xu, Xiaoyi & Li, Qi & Cai, Bofeng & Liu, Guizhen & Pang, Lingyun & Jing, Meng & Guo, Jing, 2024. "Cost assessment and potential evaluation of geologic carbon storage in China based on least-cost path analysis," Applied Energy, Elsevier, vol. 371(C).
    14. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    15. Zhang, Qi & Liu, Jiangfeng & Wang, Ge & Gao, Zhihui, 2024. "A new optimization model for carbon capture utilization and storage (CCUS) layout based on high-resolution geological variability," Applied Energy, Elsevier, vol. 363(C).
    16. Muhammad Ridhuan Tony Lim Abdullah & Saedah Siraj & Zulkipli Ghazali, 2021. "An ISM Approach for Managing Critical Stakeholder Issues Regarding Carbon Capture and Storage (CCS) Deployment in Developing Asian Countries," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    17. Lin, Boqiang & Liu, Zhiwei, 2024. "Optimal coal power phase-out pathway considering high renewable energy proportion: A provincial example," Energy Policy, Elsevier, vol. 188(C).
    18. Pianta, Silvia & Rinscheid, Adrian & Weber, Elke U., 2021. "Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy," Energy Policy, Elsevier, vol. 151(C).
    19. Jingjing Xie & Yujiao Xian & Guowei Jia, 2023. "An investigation into the public acceptance in China of carbon capture and storage (CCS) technology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    20. Song, Xiaohua & Ge, Zeqi & Zhang, Wen & Wang, Zidong & Huang, Yamin & Liu, Hong, 2023. "Study on multi-subject behavior game of CCUS cooperative alliance," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.