IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp716-732.html
   My bibliography  Save this article

A review of stochastic battery models and health management

Author

Listed:
  • Tao, Laifa
  • Ma, Jian
  • Cheng, Yujie
  • Noktehdan, Azadeh
  • Chong, Jin
  • Lu, Chen

Abstract

Batteries are promising sources of green and sustainable energy that have been widely used in various applications. Battery modelling as the basis of battery management system is vital for both technology development and applications of batteries. Compared with other battery models, stochastic battery models feature high accuracy and low time consumption. Moreover, charging profile, battery behavior, and discharging profile can all be considered to optimize battery performance and usage, which is a key issue in battery usage in real life. Given the significance of stochastic modelling and the progress of battery health management, this paper reviews various aspects of related studies and developments from different fields, while identifying their corresponding merits and weaknesses. Remaining challenges are discussed, and several suggestions are offered as possible inspirations for further research.

Suggested Citation

  • Tao, Laifa & Ma, Jian & Cheng, Yujie & Noktehdan, Azadeh & Chong, Jin & Lu, Chen, 2017. "A review of stochastic battery models and health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 716-732.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:716-732
    DOI: 10.1016/j.rser.2017.05.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    2. Lin, Cheng & Mu, Hao & Xiong, Rui & Shen, Weixiang, 2016. "A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm," Applied Energy, Elsevier, vol. 166(C), pages 76-83.
    3. Khayyam, Hamid & Naebe, Minoo & Bab-Hadiashar, Alireza & Jamshidi, Farshid & Li, Quanxiang & Atkiss, Stephen & Buckmaster, Derek & Fox, Bronwyn, 2015. "Stochastic optimization models for energy management in carbonization process of carbon fiber production," Applied Energy, Elsevier, vol. 158(C), pages 643-655.
    4. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    5. Li, Liang & You, Sixiong & Yang, Chao & Yan, Bingjie & Song, Jian & Chen, Zheng, 2016. "Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 162(C), pages 868-879.
    6. Verdejo, Humberto & Awerkin, Almendra & Saavedra, Eugenio & Kliemann, Wolfgang & Vargas, Luis, 2016. "Stochastic modeling to represent wind power generation and demand in electric power system based on real data," Applied Energy, Elsevier, vol. 173(C), pages 283-295.
    7. Cheng, Yujie & Lu, Chen & Li, Tieying & Tao, Laifa, 2015. "Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and Bayesian approach," Energy, Elsevier, vol. 90(P2), pages 1983-1993.
    8. Khalilpour, Rajab & Vassallo, Anthony, 2016. "Planning and operation scheduling of PV-battery systems: A novel methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 194-208.
    9. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    10. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    11. Mohan, Vivek & Singh, Jai Govind & Ongsakul, Weerakorn, 2015. "An efficient two stage stochastic optimal energy and reserve management in a microgrid," Applied Energy, Elsevier, vol. 160(C), pages 28-38.
    12. Iversen, Emil B. & Morales, Juan M. & Madsen, Henrik, 2014. "Optimal charging of an electric vehicle using a Markov decision process," Applied Energy, Elsevier, vol. 123(C), pages 1-12.
    13. Dai, Haifeng & Guo, Pingjing & Wei, Xuezhe & Sun, Zechang & Wang, Jiayuan, 2015. "ANFIS (adaptive neuro-fuzzy inference system) based online SOC (State of Charge) correction considering cell divergence for the EV (electric vehicle) traction batteries," Energy, Elsevier, vol. 80(C), pages 350-360.
    14. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    15. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    16. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    17. Robert, Christian P. & Celeux, Gilles & Diebolt, Jean, 1993. "Bayesian estimation of hidden Markov chains: a stochastic implementation," Statistics & Probability Letters, Elsevier, vol. 16(1), pages 77-83, January.
    18. Yinjiao Xing & Eden W. M. Ma & Kwok L. Tsui & Michael Pecht, 2011. "Battery Management Systems in Electric and Hybrid Vehicles," Energies, MDPI, vol. 4(11), pages 1-18, October.
    19. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2016. "Enhancing the design of battery charging controllers for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 646-655.
    20. Arora, Shashank & Shen, Weixiang & Kapoor, Ajay, 2016. "Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1319-1331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Banguero, Edison & Correcher, Antonio & Pérez-Navarro, Ángel & García, Emilio & Aristizabal, Andrés, 2020. "Diagnosis of a battery energy storage system based on principal component analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2438-2449.
    3. Jinsong Yu & Baohua Mo & Diyin Tang & Jie Yang & Jiuqing Wan & Jingjing Liu, 2017. "Indirect State-of-Health Estimation for Lithium-Ion Batteries under Randomized Use," Energies, MDPI, vol. 10(12), pages 1-19, December.
    4. Bizon, Nicu, 2018. "Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system," Applied Energy, Elsevier, vol. 229(C), pages 459-473.
    5. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    6. Woo-sung Kim & Hyunsang Eom & Youngsung Kwon, 2021. "Optimal Design of Photovoltaic Connected Energy Storage System Using Markov Chain Models," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    7. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    8. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    9. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Mazin Mohammed Mogadem & Yan Li, 2021. "Memristive Equivalent Circuit Model for Battery," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    11. Adriano Ceschia & Toufik Azib & Olivier Bethoux & Francisco Alves, 2020. "Optimal Sizing of Fuel Cell Hybrid Power Sources with Reliability Consideration," Energies, MDPI, vol. 13(13), pages 1-18, July.
    12. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Eugenio Camargo & Nancy Visairo & Ciro Núñez & Juan Segundo & Juan Cuevas & Dante Mora, 2019. "Detection of Low Electrolyte Level for Vented Lead–Acid Batteries Based on Electrical Measurements," Energies, MDPI, vol. 12(23), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    2. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    3. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    4. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    5. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    6. Lin, Cheng & Mu, Hao & Xiong, Rui & Cao, Jiayi, 2017. "Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: State-of-energy," Applied Energy, Elsevier, vol. 194(C), pages 560-568.
    7. Shun Xiang & Guangdi Hu & Ruisen Huang & Feng Guo & Pengkai Zhou, 2018. "Lithium-Ion Battery Online Rapid State-of-Power Estimation under Multiple Constraints," Energies, MDPI, vol. 11(2), pages 1-20, January.
    8. Donateo, Teresa & Ficarella, Antonio & Spedicato, Luigi & Arista, Alessandro & Ferraro, Marco, 2017. "A new approach to calculating endurance in electric flight and comparing fuel cells and batteries," Applied Energy, Elsevier, vol. 187(C), pages 807-819.
    9. Wang, Ju & Xiong, Rui & Li, Linlin & Fang, Yu, 2018. "A comparative analysis and validation for double-filters-based state of charge estimators using battery-in-the-loop approach," Applied Energy, Elsevier, vol. 229(C), pages 648-659.
    10. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    11. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    12. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    13. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    15. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    16. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    17. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    18. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    19. Li, Xiaoyu & Wang, Zhenpo & Zhang, Lei, 2019. "Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 174(C), pages 33-44.
    20. Tarhan, Burak & Yetik, Ozge & Karakoc, Tahir Hikmet, 2021. "Hybrid battery management system design for electric aircraft," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:716-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.