IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v195y2024ics1364032124000480.html
   My bibliography  Save this article

Review on the production of renewable biofuel: Solvent-free deoxygenation

Author

Listed:
  • Jeon, Kyung-Won
  • Gong, Ji-Hyeon
  • Kim, Min-Ju
  • Shim, Jae-Oh
  • Jang, Won-Jun
  • Roh, Hyun-Seog

Abstract

Biofuel is an eco-friendly fuel that can reduce CO2 emissions by 65% compared to using petroleum-based fuels. The commercialized biodiesel, which contains oxygen atom within its molecules, is only used in blends with petroleum-based diesel, but renewable diesel, diesel-like hydrocarbons, can completely substitute petroleum-based fuels. However, in the deoxygenation process to produce renewable diesel and jet fuel, solvents are injected to enhance the physical properties of reactants and the supply of hydrogen, thereby increasing the process expenditure. Therefore, in this review, the research results published over the past 10 years regarding the production of renewable fuels under solvent-free conditions have been critically reviewed. The effects of feedstocks, atmospheric conditions (type of gas and pressure), reaction temperature/time, catalyst type and its loading on the reaction mechanism and catalytic performance are carefully compared. Fatty acids and triglycerides require deoxygenation reactions, while furan compounds necessitate not only deoxygenation but also aldol condensation reactions to produce renewable biofuel. Higher H2 pressure and reaction temperature can enhance the reaction activity, but these parameters should be optimized while considering the process cost and side reactions. Noble metal catalysts have been reported to exhibit high deoxygenation activity, but for economic reasons, non-noble transition metals are being widely investigated. Ni is the most commonly used catalysts, and the deoxygenation mechanism varies depending on the acidity and type of acid sites on the catalyst. The feasibility of biofuels produced by solvent-free deoxygenation is assessed by comparing fuel properties with commercial diesel and jet fuel.

Suggested Citation

  • Jeon, Kyung-Won & Gong, Ji-Hyeon & Kim, Min-Ju & Shim, Jae-Oh & Jang, Won-Jun & Roh, Hyun-Seog, 2024. "Review on the production of renewable biofuel: Solvent-free deoxygenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:rensus:v:195:y:2024:i:c:s1364032124000480
    DOI: 10.1016/j.rser.2024.114325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124000480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Moon, Myounghoon & Park, Won-Kun & Lee, Soo Youn & Hwang, Kyung-Ran & Lee, Sangmin & Kim, Min-Sik & Kim, Bolam & Oh, You-Kwan & Lee, Jin-Suk, 2022. "Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Ahn, Seon-Yong & Kim, Kyoung-Jin & Kim, Beom-Jun & Hong, Ga-Ram & Jang, Won-Jun & Bae, Jong Wook & Park, Young-Kwon & Jeon, Byong-Hun & Roh, Hyun-Seog, 2023. "From gray to blue hydrogen: Trends and forecasts of catalysts and sorbents for unit process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    4. Na, Jeong-Geol & Yi, Bo Eun & Han, Jun Kyu & Oh, You-Kwan & Park, Jong-Ho & Jung, Tae Sung & Han, Sang Sup & Yoon, Hyung Chul & Kim, Jong-Nam & Lee, Hyunjoo & Ko, Chang Hyun, 2012. "Deoxygenation of microalgal oil into hydrocarbon with precious metal catalysts: Optimization of reaction conditions and supports," Energy, Elsevier, vol. 47(1), pages 25-30.
    5. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    6. Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Lee, Sanghoon & Lee, Chang Sik & Park, Sungwook & Gupta, Jai Gopal & Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2017. "Spray characteristics, engine performance and emissions analysis for Karanja biodiesel and its blends," Energy, Elsevier, vol. 119(C), pages 138-151.
    8. Mohideen, Mohamedazeem M. & Subramanian, Balachandran & Sun, Jingyi & Ge, Jing & Guo, Han & Radhamani, Adiyodi Veettil & Ramakrishna, Seeram & Liu, Yong, 2023. "Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    9. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    10. Samanta, Samiran & Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Techno-economic analysis of a fuel-cell driven integrated energy hub for decarbonising transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Moreno-Pérez, Olga M. & Marcossi, Gisele P.C. & Ortiz-Miranda, Dionisio, 2017. "Taking stock of the evolution of the biodiesel industry in Brazil: Business concentration and structural traits," Energy Policy, Elsevier, vol. 110(C), pages 525-533.
    12. Marangon, B.B. & Castro, J.S. & Assemany, P.P. & Couto, E.A. & Calijuri, M.L., 2022. "Environmental performance of microalgae hydrothermal liquefaction: Life cycle assessment and improvement insights for a sustainable renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jain, Akshay & Bora, Bhaskor Jyoti & Kumar, Rakesh & Sharma, Prabhakar & Paramasivam, Prabhu & Ağbulut, Ümit, 2024. "Decoding the performance of a blend of metal-oxide nanoparticles in Eichhornia crassipes biodiesel at varying injection timing through the routes of thermodynamic analysis and statistical optimization," Energy, Elsevier, vol. 311(C).
    2. Goh, Brandon Han Hoe & Chong, Cheng Tung & Milano, Jassinnee & Tiong, Sieh Kiong & Cui, Yanbin & Ng, Jo-Han, 2024. "Response optimisation of TiO2-supported bimetallic NiCo catalyst for the cracking and deoxygenation of waste cooking oil into jet-fuel range hydrocarbon fuels under non-hydrogen environment," Energy, Elsevier, vol. 309(C).
    3. Ho Xuan Duy, Nguyen & Agameru, Putra I Komang Gede Tryas & Quang Khai, Tran & Lim, Ocktaeck, 2024. "Experimental study of the effect of high temperature on vaporization spray characteristics under GCI engine conditions," Energy, Elsevier, vol. 311(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirner, Felix Sebastian & Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Gupta, Tarun & Agarwal, Avinash Kumar, 2019. "Performance and emission evaluation of a small-bore biodiesel compression-ignition engine," Energy, Elsevier, vol. 183(C), pages 971-982.
    2. Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Assessing the techno-economic viability of a trigeneration system integrating ammonia-fuelled solid oxide fuel cell," Applied Energy, Elsevier, vol. 357(C).
    3. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    4. Muhammad Usman & Shuo Cheng & Sasipa Boonyubol & Jeffrey S. Cross, 2023. "Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(15), pages 1-45, August.
    5. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    6. Wei, L. & Cheung, C.S. & Ning, Z., 2017. "Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine," Energy, Elsevier, vol. 127(C), pages 175-185.
    7. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
    9. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Pyrolysis of three different types of microalgae: Kinetic and evolved gas analysis," Energy, Elsevier, vol. 73(C), pages 33-43.
    10. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    11. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    12. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Alfredas Rimkus & Rafał Longwic, 2022. "Physicochemical Properties of Diethyl Ether—Sunflower Oil Blends and Their Impact on Diesel Engine Emissions," Energies, MDPI, vol. 15(11), pages 1-18, June.
    13. Ruggero Angelico & Ferruccio Giametta & Biagio Bianchi & Pasquale Catalano, 2025. "Green Hydrogen for Energy Transition: A Critical Perspective," Energies, MDPI, vol. 18(2), pages 1-47, January.
    14. Agata Jabłońska-Trypuć & Elżbieta Wołejko & Mahmudova Dildora Ernazarovna & Aleksandra Głowacka & Gabriela Sokołowska & Urszula Wydro, 2023. "Using Algae for Biofuel Production: A Review," Energies, MDPI, vol. 16(4), pages 1-23, February.
    15. Zerong Huang & Daxing Zhang & Xiangdong Wang & Xiaolong Huang & Chunsheng Wang & Liqing Liao & Yaolin Dong & Xiaoshuang Hou & Yuan Cao & Xinyao Zhou, 2024. "Machine Learning Prediction of Fuel Cell Remaining Life Enhanced by Variational Mode Decomposition and Improved Whale Optimization Algorithm," Mathematics, MDPI, vol. 12(19), pages 1-16, September.
    16. Lin, Pengmusen & Yu, Xinyu & Wang, Han & Ming, Hui & Ge, Shengbo & Liu, Fang & Peng, Haowei & Sonne, Christian & Zhang, Libo, 2023. "Life cycle assessment of bio-oil prepared from low-temperature hydrothermal oxide-catalyzed cotton stalk," Energy, Elsevier, vol. 282(C).
    17. Muteeb ul Haq & Ali Turab Jafry & Muhammad Salman Abbasi & Muhammad Jawad & Saad Ahmad & Taqi Ahmad Cheema & Naseem Abbas, 2022. "Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions," Energies, MDPI, vol. 15(20), pages 1-18, October.
    18. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Arkadiusz Gola, 2019. "The Effects of Pressure and Temperature on the Process of Auto-Ignition and Combustion of Rape Oil and Its Mixtures," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    19. Azam Beigi Kheradmand & Mahdi Heidari Soureshjani & Mehdi Jahangiri & Bejan Hamawandi, 2025. "Comparative Techno-Economic Analysis of Gray Hydrogen Production Costs: A Case Study," Sustainability, MDPI, vol. 17(2), pages 1-19, January.
    20. Juliana Araújo Pereira & Flávio José Simioni & Juliana Ferreira Soares & Jeane de Almeida do Rosário & Eduardo Bertol & Fabio Murilo Padilha Souza & Luiz Moreira Coelho Junior, 2024. "Circular Economy Practices in Biomass-Fired Power Plants in Brazil: An Assessment Using the ReSOLVE Framework," Sustainability, MDPI, vol. 16(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:195:y:2024:i:c:s1364032124000480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.