IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4133-d831668.html
   My bibliography  Save this article

Physicochemical Properties of Diethyl Ether—Sunflower Oil Blends and Their Impact on Diesel Engine Emissions

Author

Listed:
  • Krzysztof Górski

    (Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Chrobrego 45, 26-200 Radom, Poland)

  • Ruslans Smigins

    (Faculty of Engineering, Latvia University of Life Sciences and Technologies, J. Cakstes Blvd. 5, LV3001 Jelgava, Latvia)

  • Jonas Matijošius

    (Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania
    Department of Automobile Transport Engineering, Technical Faculty, Vilnius College of Technologies and Design, Olandu Str. 16, LT-01100 Vilnius, Lithuania)

  • Alfredas Rimkus

    (Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania
    Department of Automobile Transport Engineering, Technical Faculty, Vilnius College of Technologies and Design, Olandu Str. 16, LT-01100 Vilnius, Lithuania)

  • Rafał Longwic

    (Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland)

Abstract

In this paper, an analysis of the physico-chemical properties of diethyl ether/sunflower oil blends, as well as changes in emissions in work with AD3.152 diesel engine, were realized. The following properties of tested blends have been examined in detail: density ( ρ ) at 15 °C; kinematic viscosity ( v ) at 40 °C; cold filter plugging point (CFPP); lower heating value (LHV); flash point (FP); and surface tension ( ϭ ). In this research, different blends of diethyl ether (DEE) with sunflower oil (SO) in ratios of 10:90, 20:80 and 30:70% by volume were chosen. It was confirmed that DEE impacts significantly on reducing of SO viscosity. Furthermore, the density, as well as the surface tension of tested blends, have been reduced significantly when DEE was blended with SO. In this way, DEE impacts on better atomization of the SO injected into the combustion chamber. It was confirmed that DEE addition improves the low-temperature properties of SO significantly, which indicates the possibility of also using such blends in the winter season. On the other hand, the flammable DEE additive significantly lowers the flash point of the tested blends, which requires compliance with the transport safety rules applicable to gasoline. An engine tests carried out in condition of its partial load i.e., for 80 and 120 Nm, showed that combustion process of DEE/SO blends is more and more similar to the combustion of diesel fuel when adequately higher content of DEE is blended with SO. In particular, it was confirmed that the highest smoke concentration was observed for the engine operated with SO. However, 30% addition of DEE to SO brings this smokiness significantly closer to the value typical for the engine operated with diesel fuel. Additionally, concentration of unburned hydrocarbons (THC) and nitrogen oxides (NOx) are comparable for diesel fuel and DEE/SO blends.

Suggested Citation

  • Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Alfredas Rimkus & Rafał Longwic, 2022. "Physicochemical Properties of Diethyl Ether—Sunflower Oil Blends and Their Impact on Diesel Engine Emissions," Energies, MDPI, vol. 15(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4133-:d:831668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomic, Milan & Savin, Lazar & Micic, Radoslav & Simikic, Mirko & Furman, Timofej, 2014. "Possibility of using biodiesel from sunflower oil as an additive for the improvement of lubrication properties of low-sulfur diesel fuel," Energy, Elsevier, vol. 65(C), pages 101-108.
    2. Dinesha, P. & Kumar, Shiva & Rosen, Marc A., 2019. "Combined effects of water emulsion and diethyl ether additive on combustion performance and emissions of a compression ignition engine using biodiesel blends," Energy, Elsevier, vol. 179(C), pages 928-937.
    3. Ruslans Smigins & Arturs Zakis, 2020. "Impact of Diethyl Ether/Rapeseed Oil Blends on Performance and Emissions of a Light-Duty Diesel Vehicle," Energies, MDPI, vol. 13(15), pages 1-11, July.
    4. Ester Foppa Pedretti & Andrea Del Gatto & Sandro Pieri & Lorella Mangoni & Alessio Ilari & Manuela Mancini & Gabriele Feliciangeli & Elena Leoni & Giuseppe Toscano & Daniele Duca, 2019. "Experimental Study to Support Local Sunflower Oil Chains: Production of Cold Pressed Oil in Central Italy," Agriculture, MDPI, vol. 9(11), pages 1-12, October.
    5. Efe, Şükran & Ceviz, Mehmet Akif & Temur, Hakan, 2018. "Comparative engine characteristics of biodiesels from hazelnut, corn, soybean, canola and sunflower oils on DI diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 142-151.
    6. Sidibé, S.S. & Blin, J. & Vaitilingom, G. & Azoumah, Y., 2010. "Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2748-2759, December.
    7. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    8. Gintaras Valeika & Jonas Matijošius & Krzysztof Górski & Alfredas Rimkus & Ruslans Smigins, 2021. "A Study of Energy and Environmental Parameters of a Diesel Engine Running on Hydrogenated Vegetable Oil (HVO) with Addition of Biobutanol and Castor Oil," Energies, MDPI, vol. 14(13), pages 1-29, July.
    9. Krzysztof Górski & Ruslans Smigins & Rafał Longwic, 2020. "Research on Physico-Chemical Properties of Diethyl Ether/Linseed Oil Blends for the Use as Fuel in Diesel Engines," Energies, MDPI, vol. 13(24), pages 1-16, December.
    10. Chong, Cheng Tung & Chiong, Meng-Choung & Ng, Jo-Han & Lim, Mooktzeng & Tran, Manh-Vu & Valera-Medina, Agustin & Chong, William Woei Fong, 2019. "Oxygenated sunflower biodiesel: Spectroscopic and emissions quantification under reacting swirl spray conditions," Energy, Elsevier, vol. 178(C), pages 804-813.
    11. Giakoumis, Evangelos G., 2018. "Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation," Renewable Energy, Elsevier, vol. 126(C), pages 403-419.
    12. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
    13. Hossain, A.K. & Davies, P.A., 2010. "Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis," Renewable Energy, Elsevier, vol. 35(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Dimitrios Tziourtzioumis, 2023. "Cycle-to-Cycle Variation of the Combustion Process in a Diesel Engine Fueled with Rapeseed Oil—Diethyl Ether Blends," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Arkadiusz Małek & Jacek Caban & Agnieszka Dudziak & Andrzej Marciniak & Piotr Ignaciuk, 2023. "A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family," Energies, MDPI, vol. 16(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Dimitrios Tziourtzioumis, 2023. "Cycle-to-Cycle Variation of the Combustion Process in a Diesel Engine Fueled with Rapeseed Oil—Diethyl Ether Blends," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    3. Kumar, Shiva & Dinesha, P. & Ajay, C.M. & Kabbur, Poojitha, 2020. "Combined effect of oxygenated liquid and metal oxide nanoparticle fuel additives on the combustion characteristics of a biodiesel engine operated with higher blend percentages," Energy, Elsevier, vol. 197(C).
    4. Allocca, Luigi & Mancaruso, Ezio & Montanaro, Alessandro & Sequino, Luigi & Vaglieco, Bianca Maria, 2014. "Evaluation of RME (rapeseed methyl ester) and mineral diesel fuels behaviour in quiescent vessel and EURO 5 engine," Energy, Elsevier, vol. 77(C), pages 783-790.
    5. Vellaiyan, Suresh, 2023. "Recent advancements in water emulsion fuel to explore efficient and cleaner production from various biodiesels: A retrospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Sviatoslav Kryshtopa & Krzysztof Górski & Rafał Longwic & Ruslans Smigins & Liudmyla Kryshtopa & Jonas Matijošius, 2022. "Using Hydrogen Reactors to Improve the Diesel Engine Performance," Energies, MDPI, vol. 15(9), pages 1-16, April.
    7. Purushothaman Paneerselvam & Gnanamoorthi Venkadesan & Mebin Samuel Panithasan & Gurusamy Alaganathan & Sławomir Wierzbicki & Maciej Mikulski, 2021. "Evaluating the Influence of Cetane Improver Additives on the Outcomes of a Diesel Engine Characteristics Fueled with Peppermint Oil Diesel Blend," Energies, MDPI, vol. 14(10), pages 1-15, May.
    8. Daniele Cocco & Paola A. Deligios & Luigi Ledda & Leonardo Sulas & Adriana Virdis & Gianluca Carboni, 2014. "LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment," Energies, MDPI, vol. 7(10), pages 1-24, September.
    9. Qi, D.H. & Bae, C. & Feng, Y.M. & Jia, C.C. & Bian, Y.Z., 2013. "Preparation, characterization, engine combustion and emission characteristics of rapeseed oil based hybrid fuels," Renewable Energy, Elsevier, vol. 60(C), pages 98-106.
    10. Krzysztof Górski & Ruslans Smigins & Rafał Longwic, 2020. "Research on Physico-Chemical Properties of Diethyl Ether/Linseed Oil Blends for the Use as Fuel in Diesel Engines," Energies, MDPI, vol. 13(24), pages 1-16, December.
    11. No, Soo-Young, 2017. "Application of straight vegetable oil from triglyceride based biomass to IC engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 80-97.
    12. Rizwanul Fattah, I.M. & Masjuki, H.H. & Liaquat, A.M. & Ramli, Rahizar & Kalam, M.A. & Riazuddin, V.N., 2013. "Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 552-567.
    13. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    14. Hossain, A.K. & Thorpe, R. & Vasudevan, P. & Sen, P.K. & Critoph, R.E. & Davies, P.A., 2013. "Omnigen: Providing electricity, food preparation, cold storage and pure water using a variety of local fuels," Renewable Energy, Elsevier, vol. 49(C), pages 197-202.
    15. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    16. Fariza Almira Ghany & Bambang Wahono & Achmad Praptijanto & Yanuandri Putrasari & Ahmad Dimyani & Arifin Nur & Suherman & Mulia Pratama & Muhammad Khristamto Aditya Wardana, 2024. "Study on the Effect of High-Concentration Oxygen Enrichment on Engine Performance and Exhaust Emissions Using Diesel Fuel and Palm Biodiesel Substitute Fuel," Energies, MDPI, vol. 17(1), pages 1-16, January.
    17. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2024. "Study on the Performance and Emissions of Triple Blends of Diesel/Waste Plastic Oil/Vegetable Oil in a Diesel Engine: Advancing Eco-Friendly Solutions," Energies, MDPI, vol. 17(6), pages 1-17, March.
    18. M.H.H. Ishak & Farzad Ismail & Sharzali Che Mat & M.Z. Abdullah & M.S. Abdul Aziz & M.Y. Idroas, 2019. "Numerical Analysis of Nozzle Flow and Spray Characteristics from Different Nozzles Using Diesel and Biofuel Blends," Energies, MDPI, vol. 12(2), pages 1-25, January.
    19. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    20. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4133-:d:831668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.