Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2022.112941
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Iulia Dolganova & Anne Rödl & Vanessa Bach & Martin Kaltschmitt & Matthias Finkbeiner, 2020. "A Review of Life Cycle Assessment Studies of Electric Vehicles with a Focus on Resource Use," Resources, MDPI, vol. 9(3), pages 1-20, March.
- Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
- Maryori C. Díaz-Ramírez & Victor J. Ferreira & Tatiana García-Armingol & Ana M. López-Sabirón & Germán Ferreira, 2020. "Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
- Ye, Miaomiao & Li, Mengzhe & Zeng, Qiannan, 2022. "Former CEO director and executive-employee pay gap," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
- Aleksandra Wewer & Pinar Bilge & Franz Dietrich, 2021. "Advances of 2nd Life Applications for Lithium Ion Batteries from Electric Vehicles Based on Energy Demand," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
- Lander, Laura & Kallitsis, Evangelos & Hales, Alastair & Edge, Jacqueline Sophie & Korre, Anna & Offer, Gregory, 2021. "Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management," Applied Energy, Elsevier, vol. 289(C).
- Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
- Idiano D’Adamo & Paolo Rosa, 2019. "A Structured Literature Review on Obsolete Electric Vehicles Management Practices," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
- Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
- Joan Manuel F. Mendoza & Maria Sharmina & Alejandro Gallego-Schmid & Graeme Heyes & Adisa Azapagic, 2017. "Integrating Backcasting and Eco-Design for the Circular Economy: The BECE Framework," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 526-544, June.
- Sagar Bhattacharya & Eleonora G. Margheritis & Katsuya Takahashi & Alona Kulesha & Areetha D’Souza & Inhye Kim & Jennifer H. Yoon & Jeremy R. H. Tame & Alexander N. Volkov & Olga V. Makhlynets & Ivan , 2022. "NMR-guided directed evolution," Nature, Nature, vol. 610(7931), pages 389-393, October.
- Christos S. Ioakimidis & Alberto Murillo-Marrodán & Ali Bagheri & Dimitrios Thomas & Konstantinos N. Genikomsakis, 2019. "Life Cycle Assessment of a Lithium Iron Phosphate (LFP) Electric Vehicle Battery in Second Life Application Scenarios," Sustainability, MDPI, vol. 11(9), pages 1-14, May.
- Jeff Mangers & Meysam Minoufekr & Peter Plapper & Sri Kolla, 2021. "An Innovative Strategy Allowing a Holistic System Change towards Circular Economy within Supply-Chains," Energies, MDPI, vol. 14(14), pages 1-17, July.
- Bamidele Victor Ayodele & Siti Indati Mustapa, 2020. "Life Cycle Cost Assessment of Electric Vehicles: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
- Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
- Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
- Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
- Marit Mohr & Jens F. Peters & Manuel Baumann & Marcel Weil, 2020. "Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1310-1322, December.
- Li, Mengzhe & Lan, Fei, 2022. "Former CEO directors and cash holdings," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 320-334.
- Wei Lin & Jin E. Zhang, 2022. "Pricing VXX options by modeling VIX directly," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 888-922, May.
- Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
- Hao Li & Ziheng Zhou & Wangyu Sun & Michaël Lobet & Nader Engheta & Iñigo Liberal & Yue Li, 2022. "Direct observation of ideal electromagnetic fluids," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
- Rebecca E. Ciez & J. F. Whitacre, 2019. "Examining different recycling processes for lithium-ion batteries," Nature Sustainability, Nature, vol. 2(2), pages 148-156, February.
- Trevor Zink & Roland Geyer, 2017. "Circular Economy Rebound," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 593-602, June.
- Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
- Edward P.K. Tsang, 2022. "Directional change for handling tick-to-tick data," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 20(2), pages 171-182, April.
- Liu, Juan & Li, Shupeng & Zhang, Xindong & Lai, Hong-Jian, 2022. "Hamiltonian index of directed multigraph," Applied Mathematics and Computation, Elsevier, vol. 425(C).
- Andrea Temporelli & Maria Leonor Carvalho & Pierpaolo Girardi, 2020. "Life Cycle Assessment of Electric Vehicle Batteries: An Overview of Recent Literature," Energies, MDPI, vol. 13(11), pages 1-13, June.
- Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jeon, Kyung-Won & Gong, Ji-Hyeon & Kim, Min-Ju & Shim, Jae-Oh & Jang, Won-Jun & Roh, Hyun-Seog, 2024. "Review on the production of renewable biofuel: Solvent-free deoxygenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
- Li, Chengjiang & Hao, Qianwen & Wang, Honglei & Hu, Yu-jie & Xu, Guoteng & Qin, Quande & Wang, Xiaolin & Negnevitsky, Michael, 2024. "Assessing green methanol vehicles' deployment with life cycle assessment-system dynamics model," Applied Energy, Elsevier, vol. 363(C).
- Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
- Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
- Fuquan Zhao & Kangda Chen & Han Hao & Zongwei Liu, 2020. "Challenges, Potential and Opportunities for Internal Combustion Engines in China," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
- Idiano D’Adamo & Paolo Rosa, 2019. "A Structured Literature Review on Obsolete Electric Vehicles Management Practices," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
- Marit Mohr & Jens F. Peters & Manuel Baumann & Marcel Weil, 2020. "Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1310-1322, December.
- Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
- Oda, Hiromu & Noguchi, Hiroki & Fuse, Masaaki, 2022. "Review of life cycle assessment for automobiles: A meta-analysis-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).
- Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2022. "Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong," Research in Transportation Economics, Elsevier, vol. 91(C).
- Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
- Aleksandra Wewer & Pinar Bilge & Franz Dietrich, 2021. "Advances of 2nd Life Applications for Lithium Ion Batteries from Electric Vehicles Based on Energy Demand," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
- Jani Das, 2022. "Comparative life cycle GHG emission analysis of conventional and electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13294-13333, November.
- Ashley Nunes & Lucas Woodley & Philip Rossetti, 2022. "Re-thinking procurement incentives for electric vehicles to achieve net-zero emissions," Nature Sustainability, Nature, vol. 5(6), pages 527-532, June.
- Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Cris Garcia-Saravia Ortiz-de-Montellano & Yvonne Meer, 2022. "A Theoretical Framework for Circular Processes and Circular Impacts Through a Comprehensive Review of Indicators," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 291-314, June.
- Rosario Tolomeo & Giovanni De Feo & Renata Adami & Libero Sesti Osséo, 2020. "Application of Life Cycle Assessment to Lithium Ion Batteries in the Automotive Sector," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
- Wang, Lei & Wang, Xiang & Yang, Wenxian, 2020. "Optimal design of electric vehicle battery recycling network – From the perspective of electric vehicle manufacturers," Applied Energy, Elsevier, vol. 275(C).
- Peiseler, Leopold & Cabrera Serrenho, André, 2022. "How can current German and EU policies be improved to enhance the reduction of CO2 emissions of road transport? Revising policies on electric vehicles informed by stakeholder and technical assessments," Energy Policy, Elsevier, vol. 168(C).
- Monia Niero & Charlotte L. Jensen & Chiara Farné Fratini & Jens Dorland & Michael S. Jørgensen & Susse Georg, 2021. "Is life cycle assessment enough to address unintended side effects from Circular Economy initiatives?," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1111-1120, October.
- Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
More about this item
Keywords
Circular economy; Electric mobility; Life cycle thinking; Li-ion battery; Literature screening; Sustainable mobility;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:169:y:2022:i:c:s136403212200822x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.