IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v119y2017icp138-151.html
   My bibliography  Save this article

Spray characteristics, engine performance and emissions analysis for Karanja biodiesel and its blends

Author

Listed:
  • Lee, Sanghoon
  • Lee, Chang Sik
  • Park, Sungwook
  • Gupta, Jai Gopal
  • Maurya, Rakesh Kumar
  • Agarwal, Avinash Kumar

Abstract

The purpose of this paper is to investigate the effects of blending ratio of Karanja oil methyl ester (KOME) on spray characteristics and to analyze the engine performance and exhaust emissions of Karanja biodiesel blend vis-a-vis baseline diesel. Spray characteristics were analyzed using injection rate and spray visualization experiments for the following injection pressures: 50, 100 and 150 MPa. Engine performance, emission and combustion characteristics were also investigated at various engine operation conditions.

Suggested Citation

  • Lee, Sanghoon & Lee, Chang Sik & Park, Sungwook & Gupta, Jai Gopal & Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2017. "Spray characteristics, engine performance and emissions analysis for Karanja biodiesel and its blends," Energy, Elsevier, vol. 119(C), pages 138-151.
  • Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:138-151
    DOI: 10.1016/j.energy.2016.12.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216318485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk & Lim, Hee Chang, 2013. "A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends," Energy, Elsevier, vol. 56(C), pages 1-7.
    2. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    3. Kegl, Breda, 2011. "Influence of biodiesel on engine combustion and emission characteristics," Applied Energy, Elsevier, vol. 88(5), pages 1803-1812, May.
    4. Hwang, Joonsik & Qi, Donghui & Jung, Yongjin & Bae, Choongsik, 2014. "Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel," Renewable Energy, Elsevier, vol. 63(C), pages 9-17.
    5. Park, Su Han & Cha, Junepyo & Kim, Hyung Jun & Lee, Chang Sik, 2012. "Effect of early injection strategy on spray atomization and emission reduction characteristics in bioethanol blended diesel fueled engine," Energy, Elsevier, vol. 39(1), pages 375-387.
    6. Agarwal, Avinash Kumar & Dhar, Atul & Gupta, Jai Gopal & Kim, Woong Il & Lee, Chang Sik & Park, Sungwook, 2014. "Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine," Applied Energy, Elsevier, vol. 130(C), pages 212-221.
    7. Zhang, Ji & Jing, Wei & Roberts, William L. & Fang, Tiegang, 2013. "Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions," Energy, Elsevier, vol. 57(C), pages 722-732.
    8. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as i," Renewable Energy, Elsevier, vol. 33(9), pages 2007-2018.
    9. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    10. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part II: Experimental study," Energy, Elsevier, vol. 72(C), pages 17-34.
    11. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    12. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    13. An, H. & Yang, W.M. & Maghbouli, A. & Li, J. & Chou, S.K. & Chua, K.J., 2013. "Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils," Applied Energy, Elsevier, vol. 112(C), pages 493-499.
    14. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part I: Review," Energy, Elsevier, vol. 72(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirner, Felix Sebastian & Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Gupta, Tarun & Agarwal, Avinash Kumar, 2019. "Performance and emission evaluation of a small-bore biodiesel compression-ignition engine," Energy, Elsevier, vol. 183(C), pages 971-982.
    2. Zhang, Xiaoqing & Li, Tie & Wang, Bin & Wei, Yijie, 2018. "Superheat limit and micro-explosion in droplets of hydrous ethanol-diesel emulsions at atmospheric pressure and diesel-like conditions," Energy, Elsevier, vol. 154(C), pages 535-543.
    3. Jeon, Kyung-Won & Gong, Ji-Hyeon & Kim, Min-Ju & Shim, Jae-Oh & Jang, Won-Jun & Roh, Hyun-Seog, 2024. "Review on the production of renewable biofuel: Solvent-free deoxygenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    4. Xiaoqing Zhang & Tie Li & Pengfei Ma & Bin Wang, 2017. "Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry," Energies, MDPI, vol. 10(12), pages 1-13, December.
    5. Hani Al-Rawashdeh & Ahmad O. Hasan & Mohamed R. Gomaa & Ahmad Abu-jrai & Mohammad Shalby, 2022. "Determination of Carbonyls Compound, Ketones and Aldehydes Emissions from CI Diesel Engines Fueled with Pure Diesel/Diesel Methanol Blends," Energies, MDPI, vol. 15(21), pages 1-16, October.
    6. Wei, L. & Cheung, C.S. & Ning, Z., 2017. "Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine," Energy, Elsevier, vol. 127(C), pages 175-185.
    7. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    8. Sattar Jabbar Murad Algayyim & Andrew P. Wandel & Talal Yusaf, 2018. "The Impact of Injector Hole Diameter on Spray Behaviour for Butanol-Diesel Blends," Energies, MDPI, vol. 11(5), pages 1-12, May.
    9. Nautiyal, Piyushi & Subramanian, K.A. & Dastidar, M.G. & Kumar, Ashok, 2020. "Experimental assessment of performance, combustion and emissions of a compression ignition engine fuelled with Spirulina platensis biodiesel," Energy, Elsevier, vol. 193(C).
    10. Muteeb ul Haq & Ali Turab Jafry & Muhammad Salman Abbasi & Muhammad Jawad & Saad Ahmad & Taqi Ahmad Cheema & Naseem Abbas, 2022. "Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions," Energies, MDPI, vol. 15(20), pages 1-18, October.
    11. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. He, Bang-Quan, 2016. "Advances in emission characteristics of diesel engines using different biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 570-586.
    3. Lin, Kuang C. & Dahiya, Anurag & Tao, Hairong & Kao, Fan-Hsu, 2022. "Combustion mechanism and CFD investigation of methyl isobutanoate as a component of biodiesel surrogate," Energy, Elsevier, vol. 249(C).
    4. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    5. Flavio Caresana & Marco Bietresato & Massimiliano Renzi, 2021. "Injection and Combustion Analysis of Pure Rapeseed Oil Methyl Ester (RME) in a Pump-Line-Nozzle Fuel Injection System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    6. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    7. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    8. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    9. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    10. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    11. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2016. "Analysis of combustion phenomena and pollutant formation in a small compression ignition engine fuelled with blended and pure rapeseed methyl ester," Energy, Elsevier, vol. 106(C), pages 618-630.
    12. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    13. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    14. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    16. Bora, Bhaskor J. & Saha, Ujjwal K., 2016. "Experimental evaluation of a rice bran biodiesel – biogas run dual fuel diesel engine at varying compression ratios," Renewable Energy, Elsevier, vol. 87(P1), pages 782-790.
    17. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    18. Bora, Bhaskor J. & Saha, Ujjwal K., 2015. "Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels," Renewable Energy, Elsevier, vol. 81(C), pages 490-498.
    19. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    20. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:119:y:2017:i:c:p:138-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.