Behind of the criticality for rare earth elements: Surplus of China’s yttrium
Author
Abstract
Suggested Citation
DOI: 10.1016/j.resourpol.2022.102624
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nobuo Sekine & Ichiro Daigo & Yoshikazu Goto, 2017. "Dynamic Substance Flow Analysis of Neodymium and Dysprosium Associated with Neodymium Magnets in Japan," Journal of Industrial Ecology, Yale University, vol. 21(2), pages 356-367, April.
- Wang, Jianliang & Guo, Meiyu & Liu, Mingming & Wei, Xinqiang, 2020. "Long-term outlook for global rare earth production," Resources Policy, Elsevier, vol. 65(C).
- Xiaoyue Du & T. E. Graedel, 2011. "Global Rare Earth In‐Use Stocks in NdFeB Permanent Magnets," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 836-843, December.
- Brown, Maxwell & Eggert, Roderick, 2018. "Simulating producer responses to selected chinese rare earth policies," Resources Policy, Elsevier, vol. 55(C), pages 31-48.
- N.T. Nassar & Xiaoyue Du & T.E. Graedel, 2015. "Criticality of the Rare Earth Elements," Journal of Industrial Ecology, Yale University, vol. 19(6), pages 1044-1054, December.
- Schulze, Rita & Buchert, Matthias, 2016. "Estimates of global REE recycling potentials from NdFeB magnet material," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 12-27.
- Yuna Seo & Shinichirou Morimoto, 2016. "Domestic Yttrium Consumption Trends in Japan," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1064-1071, October.
- Jingxuan Geng & Han Hao & Xin Sun & Dengye Xun & Zongwei Liu & Fuquan Zhao, 2021. "Static material flow analysis of neodymium in China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 114-124, February.
- Luca Ciacci & Ivano Vassura & Fabrizio Passarini, 2018. "Shedding Light on the Anthropogenic Europium Cycle in the EU–28. Marking Product Turnover and Energy Progress in the Lighting Sector," Resources, MDPI, vol. 7(3), pages 1-17, September.
- Zhang, Kuangyuan & Kleit, Andrew N. & Nieto, Antonio, 2017. "An economics strategy for criticality – Application to rare earth element Yttrium in new lighting technology and its sustainable availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 899-915.
- Andreas Goldthau & Llewelyn Hughes, 2020. "Protect global supply chains for low-carbon technologies," Nature, Nature, vol. 585(7823), pages 28-30, September.
- Massari, Stefania & Ruberti, Marcello, 2013. "Rare earth elements as critical raw materials: Focus on international markets and future strategies," Resources Policy, Elsevier, vol. 38(1), pages 36-43.
- Schmid, Marc, 2019. "Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
- Pauliuk, Stefan & Wang, Tao & Müller, Daniel B., 2013. "Steel all over the world: Estimating in-use stocks of iron for 200 countries," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 22-30.
- Hayes, Sarah M. & McCullough, Erin A., 2018. "Critical minerals: A review of elemental trends in comprehensive criticality studies," Resources Policy, Elsevier, vol. 59(C), pages 192-199.
- Stefania Panousi & E. M. Harper & Philip Nuss & Matthew J. Eckelman & Ali Hakimian & T. E. Graedel, 2016. "Criticality of Seven Specialty Metals," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 837-853, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Elisa Alonso & David G. Pineault & Joseph Gambogi & Nedal T. Nassar, 2023. "Mapping first to final uses for rare earth elements, globally and in the United States," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 312-322, February.
- Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
- Gao, Cuixia & Xu, Yufei & Geng, Yong & Xiao, Shijiang, 2022. "Uncovering terbium metabolism in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 79(C).
- Mei, Yueru & Geng, Yong & Xiao, Shijiang & Su, Chang & Gao, Ziyan & Wei, Wendong, 2023. "Dynamic material flow analysis of rhenium in China for 2011–2020," Resources Policy, Elsevier, vol. 86(PB).
- Zhao, Guimei & Li, Wenxiu & Geng, Yong & Bleischwitz, Raimund, 2023. "Dynamic material flow analysis of antimony resources in China," Resources Policy, Elsevier, vol. 86(PB).
- Song, Xiaoqian & Geng, Yong & Zhang, Yuquan & Zhang, Xi & Gao, Ziyan & Li, Minghang, 2022. "Dynamic potassium flows analysis in China for 2010–2019," Resources Policy, Elsevier, vol. 78(C).
- Ge, Zewen & Geng, Yong & Wei, Wendong & Zhong, Chen, 2022. "Assessing samarium resource efficiency in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 76(C).
- Xiao, Shijiang & Geng, Yong & Rui, Xue & Gao, Ziyan & Su, Chang & Yao, Tianli & Zhong, Chen, 2024. "Anthropogenic cycles of praseodymium in China: 2000–2020," Resources Policy, Elsevier, vol. 92(C).
- Zhao, Guimei & Geng, Yong & Wei, Wendong & Bleischwitz, Raimund & Ge, Zewen, 2023. "Assessing gadolinium resource efficiency and criticality in China," Resources Policy, Elsevier, vol. 80(C).
- Zhu, Xiangyan & Geng, Yong & Gao, Ziyan & Tian, Xu & Xiao, Shijiang & Houssini, Khaoula, 2023. "Investigating zirconium flows and stocks in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 80(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Xiaoming & Islam, Md. Monirul & Mentel, Grzegorz & Ahmad, Ashfaq & Vasa, László, 2024. "Synergistic dynamics unveiled: Interplay between rare earth prices, clean energy innovations, and tech companies' market resilience amidst the Covid-19 pandemic and Russia-Ukraine conflict," Resources Policy, Elsevier, vol. 89(C).
- Xia, Qifan & Du, Debin & Cao, Wanpeng & Li, Xiya, 2023. "Who is the core? Reveal the heterogeneity of global rare earth trade structure from the perspective of industrial chain," Resources Policy, Elsevier, vol. 82(C).
- Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
- Depraiter, Lisa & Goutte, Stephane, 2023. "The role and challenges of rare earths in the energy transition," Resources Policy, Elsevier, vol. 86(PB).
- Salim, Hengky & Sahin, Oz & Elsawah, Sondoss & Turan, Hasan & Stewart, Rodney A., 2022. "A critical review on tackling complex rare earth supply security problem," Resources Policy, Elsevier, vol. 77(C).
- Jingxuan Geng & Han Hao & Xin Sun & Dengye Xun & Zongwei Liu & Fuquan Zhao, 2021. "Static material flow analysis of neodymium in China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 114-124, February.
- Schmid, Marc, 2019. "Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
- Li, Yizhou & Wang, Yibo & Ge, Jianping, 2023. "Tracing the material flows of dysprosium in China from 2010 to 2020: An investigation of the partition characteristics of different rare earth mining areas," Resources Policy, Elsevier, vol. 85(PB).
- Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Kondo, Yasushi & Tohno, Susumu, 2017. "Economic and social determinants of global physical flows of critical metals," Resources Policy, Elsevier, vol. 52(C), pages 107-113.
- Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
- Thibeault, Al & Ryder, Michael & Tomomewo, Olusegun & Mann, Michael, 2023. "A review of competitive advantage theory applied to the global rare earth industry transition," Resources Policy, Elsevier, vol. 85(PA).
- Nwaila, Glen T. & Bourdeau, Julie E. & Zhang, Steven E. & Chipangamate, Nelson & Valodia, Imraan & Mahboob, Muhammad Ahsan & Lehohla, Thakaramahlaha & Shimaponda-Nawa, Mulundumina & Durrheim, Raymond , 2024. "A systematic framework for compilation of critical raw material lists and their importance for South Africa," Resources Policy, Elsevier, vol. 93(C).
- Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2022. "Time and frequency spillovers between political risk and the stock returns of China's rare earths," Resources Policy, Elsevier, vol. 75(C).
- Vidal, Rosario & Alberola-Borràs, Jaume-Adrià & Mora-Seró, Iván, 2020. "Abiotic depletion and the potential risk to the supply of cesium," Resources Policy, Elsevier, vol. 68(C).
- Keilhacker, Michael L. & Minner, Stefan, 2017. "Supply chain risk management for critical commodities: A system dynamics model for the case of the rare earth elements," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 349-362.
- Yanjing Jia & Chao Ding & Zhiliang Dong, 2021. "Transmission Mechanism of Stock Price Fluctuation in the Rare Earth Industry Chain," Sustainability, MDPI, vol. 13(22), pages 1-21, November.
- Jianyun Chen & Wenxing Zhu & Xianping Luo, 2022. "Government Reserve of Rare Earths under Total Quota Management: An Interactive Game between Government and Rare-Earth Firms," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
- Klossek, Polina & Kullik, Jakob & van den Boogaart, Karl Gerald, 2016. "A systemic approach to the problems of the rare earth market," Resources Policy, Elsevier, vol. 50(C), pages 131-140.
- repec:hal:wpaper:halshs-04126172 is not listed on IDEAS
- Černý, Igor & Vaněk, Michal & Maruszewska, Ewa Wanda & Beneš, Filip, 2021. "How economic indicators impact the EU internal demand for critical raw materials," Resources Policy, Elsevier, vol. 74(C).
- Xiao, Shijiang & Geng, Yong & Rui, Xue & Gao, Ziyan & Su, Chang & Yao, Tianli & Zhong, Chen, 2024. "Anthropogenic cycles of praseodymium in China: 2000–2020," Resources Policy, Elsevier, vol. 92(C).
More about this item
Keywords
Material flow analysis; Phosphor; Stockpile; Supply and demand; Recycling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:76:y:2022:i:c:s0301420722000733. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.