IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921011314.html
   My bibliography  Save this article

Comprehensive assessment of energy conservation and CO2 emission reduction in future aluminum supply chain

Author

Listed:
  • Tian, Shuoshuo
  • Di, Yuezhong
  • Dai, Min
  • Chen, Weiqiang
  • Zhang, Qi

Abstract

Over the past decade, the global aluminum industry has undergone profound changes, particularly as a result of China emerging as a powerhouse production base, accounting for approximately 60% of global smelting capacity by the end of 2018. To explore the potential energy conservation and CO2 emission reduction of China's aluminum industry during 2010–2050, we developed a comprehensive assessment framework based on quasi-dynamic material flow analysis, energy consumption, and CO2 emission models. Four scenarios were designed to outline future energy savings and CO2 emission mitigation in China's aluminum industry. The results show that China's aluminum demand will consistently increase from 22.67 Mt in 2010 to 51.20 Mt in 2050. In the short term, China's aluminum industry cannot achieve a completely circular economy without implementing new policies. The results also indicate that the energy intensity and CO2 emissions per ton of aluminum will gradually decline under the multiple effects of technology promotion and structure adjustment. Under all four scenarios, the strengthened policy (STP) scenario has the least total energy consumption (TEC), reaching 46.57 Mtce and 24.11 Mtce in 2030 and 2050, respectively. The effect of energy conservation and emission reductions brought about by adjusting the production structure was far higher than the increasing technology penetration rate.

Suggested Citation

  • Tian, Shuoshuo & Di, Yuezhong & Dai, Min & Chen, Weiqiang & Zhang, Qi, 2022. "Comprehensive assessment of energy conservation and CO2 emission reduction in future aluminum supply chain," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011314
    DOI: 10.1016/j.apenergy.2021.117796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingming Hu & Ester Van Der Voet & Gjalt Huppes, 2010. "Dynamic Material Flow Analysis for Strategic Construction and Demolition Waste Management in Beijing," Journal of Industrial Ecology, Yale University, vol. 14(3), pages 440-456, June.
    2. Lin, Boqiang & Zhang, Guoliang, 2013. "Estimates of electricity saving potential in Chinese nonferrous metals industry," Energy Policy, Elsevier, vol. 60(C), pages 558-568.
    3. Hu, Mingming & Pauliuk, Stefan & Wang, Tao & Huppes, Gjalt & van der Voet, Ester & Müller, Daniel B., 2010. "Iron and steel in Chinese residential buildings: A dynamic analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(9), pages 591-600.
    4. Hao, Han & Geng, Yong & Hang, Wen, 2016. "GHG emissions from primary aluminum production in China: Regional disparity and policy implications," Applied Energy, Elsevier, vol. 166(C), pages 264-272.
    5. Gang Liu & Colton E. Bangs & Daniel B. Müller, 2013. "Stock dynamics and emission pathways of the global aluminium cycle," Nature Climate Change, Nature, vol. 3(4), pages 338-342, April.
    6. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    7. Bertram, M. & Ramkumar, S. & Rechberger, H. & Rombach, G. & Bayliss, C. & Martchek, K.J. & Müller, D.B. & Liu, G., 2017. "A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 48-69.
    8. Liu, Zhe & Geng, Yong & Adams, Michelle & Dong, Liang & Sun, Lina & Zhao, Jingjing & Dong, Huijuan & Wu, Jiao & Tian, Xu, 2016. "Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis," Applied Energy, Elsevier, vol. 166(C), pages 253-263.
    9. Heming Wang & Heinz Schandl & Guoqiang Wang & Lin Ma & Yao Wang, 2019. "Regional material flow accounts for China: Examining China's natural resource use at the provincial and national level," Journal of Industrial Ecology, Yale University, vol. 23(6), pages 1425-1438, December.
    10. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    11. Maung, Kyaw Nyunt & Yoshida, Tomoharu & Liu, Gang & Lwin, Cherry Myo & Muller, Daniel B. & Hashimoto, Seiji, 2017. "Assessment of secondary aluminum reserves of nations," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 34-41.
    12. Di Dong & Arnold Tukker & Ester Van der Voet, 2019. "Modeling copper demand in China up to 2050: A business‐as‐usual scenario based on dynamic stock and flow analysis," Journal of Industrial Ecology, Yale University, vol. 23(6), pages 1363-1380, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Jinfeng Han & Bing Feng & Zejun Chen & Zhili Liang & Yuran Chen & Xuemin Liang, 2024. "Simulation and Application of a New Type of Energy-Saving Steel Claw for Aluminum Electrolysis Cells," Sustainability, MDPI, vol. 16(18), pages 1-15, September.
    3. Ren, Yi-Shuai & Liu, Pei-Zhi & Klein, Tony & Sheenan, Lisa, 2024. "Does the low-carbon pilot cities policy make a difference to the carbon intensity reduction?," Journal of Economic Behavior & Organization, Elsevier, vol. 217(C), pages 227-239.
    4. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    5. Xue, Mingfu & Razzaq, Asif & Afshan, Sahar & Yang, Xiaodong, 2023. "Fiscal pressure and carbon intensity: A quasi-natural experiment based on education authority reform," Energy Economics, Elsevier, vol. 126(C).
    6. Liu, Weipeng & Zhao, Chunhui & Peng, Tao & Zhang, Zhongwei & Wan, Anping, 2023. "Simulation-assisted multi-process integrated optimization for greentelligent aluminum casting," Applied Energy, Elsevier, vol. 336(C).
    7. Shen, Angxing & Zhang, Jihong, 2024. "Technologies for CO2 emission reduction and low-carbon development in primary aluminum industry in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Angxing & Zhang, Jihong, 2024. "Technologies for CO2 emission reduction and low-carbon development in primary aluminum industry in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    4. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
    5. Eheliyagoda, Disna & Li, Jinhui & Geng, Yong & Zeng, Xianlai, 2022. "The role of China's aluminum recycling on sustainable resource and emission pathways," Resources Policy, Elsevier, vol. 76(C).
    6. Liu, Zhe & Geng, Yong & Adams, Michelle & Dong, Liang & Sun, Lina & Zhao, Jingjing & Dong, Huijuan & Wu, Jiao & Tian, Xu, 2016. "Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis," Applied Energy, Elsevier, vol. 166(C), pages 253-263.
    7. Zhou, Yucheng & Yang, Ning & Hu, Shanying, 2013. "Industrial metabolism of PVC in China: A dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 33-40.
    8. Olaya, Yris & Vásquez, Felipe & Müller, Daniel B., 2017. "Dwelling stock dynamics for addressing housing deficit," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 187-199.
    9. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    10. Li, Shupeng & Niu, Liping & Yue, Qiang & Zhang, Tingan, 2022. "Trajectory, driving forces, and mitigation potential of energy-related greenhouse gas (GHG) emissions in China's primary aluminum industry," Energy, Elsevier, vol. 239(PB).
    11. Yu, Biying & Zhao, Zihao & Zhang, Shuai & An, Runying & Chen, Jingming & Li, Ru & Zhao, Guangpu, 2021. "Technological development pathway for a low-carbon primary aluminum industry in China," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    12. Li, Shupeng & Wang, Zhe & Yue, Qiang & Zhang, Tingan, 2022. "Analysis of the quantity and spatial characterization of aluminum in-use stocks in China," Resources Policy, Elsevier, vol. 79(C).
    13. Justus Poschmann & Vanessa Bach & Matthias Finkbeiner, 2023. "Decarbonization Potentials for Automotive Supply Chains: Emission-Intensity Pathways of Carbon-Intensive Hotspots of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    14. Ling Zhang & Qingqing Lu & Zengwei Yuan & Songyan Jiang & Huijun Wu, 2023. "A bottom‐up modeling of metabolism of the residential building system in China toward 2050," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 587-600, April.
    15. Wang, Tao & Tian, Xin & Hashimoto, Seiji & Tanikawa, Hiroki, 2015. "Concrete transformation of buildings in China and implications for the steel cycle," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 205-215.
    16. Liu, Weipeng & Peng, Tao & Kishita, Yusuke & Umeda, Yasushi & Tang, Renzhong & Tang, Wangchujun & Hu, Luoke, 2021. "Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology," Applied Energy, Elsevier, vol. 304(C).
    17. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    18. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Zhe Wang & Shupeng Li & Zijian Lin & Jiancong Ye & Yi Yang & Qiang Yue, 2024. "Modeling Aluminum Stocks and Flows in China until 2050 Using a Bottom-Up Approach: Business-As-Usual Scenario Analysis," Sustainability, MDPI, vol. 16(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.