IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics136403212300922x.html
   My bibliography  Save this article

Determining the potential risks of naturally ventilated double skin façades

Author

Listed:
  • Dong, Qichang
  • Zhao, Xiaoqing
  • Song, Ye
  • Qi, Jiacheng
  • Shi, Long

Abstract

Double skin façade (DSF) as a passive renewable technique has been widely used due to its ability to reduce energy consumption by enhancing natural ventilation. However, previous studies mainly focused on its optimization designs, and its potential risks as determining factors have been less explored. This study reviewed three typical potential risks of DSF, including overheating, structural, and fire risks, and analyzed their manifestations, influencing factors, and possible mitigation. The overheating risk, mainly from direct sunlight and inadequate ventilation, can be mitigated by optimizing DSF design parameters or adding additional components. Wind-induced vibration, earthquake, or blast impact are the causes of the second risk, structural damage to DSFs. Appropriate building shapes and vent sizes can improve airflow inside and outside the DSF and reduce wind-induced vibrations. Regarding strong shocks, dampers can be used to eliminate excessive movement. Heat and smoke from a fire show complex coupling effects on the structures of DSFs, propagating along the cavity and causing flame spread, glass cracking, and else. Optimizing DSF design parameters and adding perforated plates and refractory glass can reduce the risk of fire to DSF. It is crucial to consider the relevance of the thermal performance of various DSFs to safety. Different types of DSFs have different potential risks, so it is necessary to fully consider not only their energy performance but also their application scenarios and the corresponding areas where risks will occur. This study provides a guideline for designing and optimizing DSFs regarding risk mitigations.

Suggested Citation

  • Dong, Qichang & Zhao, Xiaoqing & Song, Ye & Qi, Jiacheng & Shi, Long, 2024. "Determining the potential risks of naturally ventilated double skin façades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s136403212300922x
    DOI: 10.1016/j.rser.2023.114064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212300922X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    2. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Barbosa, Sabrina & Ip, Kenneth, 2014. "Perspectives of double skin façades for naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1019-1029.
    4. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    5. Thomas Wüest & Lars O. Grobe & Andreas Luible, 2020. "An Innovative Façade Element with Controlled Solar-Thermal Collector and Storage," Sustainability, MDPI, vol. 12(13), pages 1-21, June.
    6. Kyung-joo Cho & Dong-woo Cho, 2018. "Solar Heat Gain Coefficient Analysis of a Slim-Type Double Skin Window System: Using an Experimental and a Simulation Method," Energies, MDPI, vol. 11(1), pages 1-17, January.
    7. Nasrollahi, Nazanin & Salehi, Majid, 2015. "Performance enhancement of double skin facades in hot and dry climates using wind parameters," Renewable Energy, Elsevier, vol. 83(C), pages 1-12.
    8. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
    9. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Su, Xiaosong & Lian, Jinbu & Luo, Yongwei, 2018. "Coupled thermal-electrical-optical analysis of a photovoltaic-blind integrated glazing façade," Applied Energy, Elsevier, vol. 228(C), pages 1870-1886.
    10. Zhu, Li & Zhang, Jiqiang & Li, Qingxiang & Shao, Zebiao & Chen, Mengdong & Yang, Yang & Sun, Yong, 2020. "Comprehensive analysis of heat transfer of double-skin facades integrated high concentration photovoltaic (CPV-DSF)," Renewable Energy, Elsevier, vol. 161(C), pages 635-649.
    11. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Pourshab, Nasrin & Tehrani, Mehdi Dadkhah & Toghraie, Davood & Rostami, Sara, 2020. "Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings," Energy, Elsevier, vol. 200(C).
    13. Saboor Shaik & Kirankumar Gorantla & Aritra Ghosh & Chelliah Arumugam & Venkata Ramana Maduru, 2021. "Energy Savings and Carbon Emission Mitigation Prospective of Building’s Glazing Variety, Window-to-Wall Ratio and Wall Thickness," Energies, MDPI, vol. 14(23), pages 1-19, December.
    14. Zogou, Olympia & Stapountzis, Herricos, 2011. "Energy analysis of an improved concept of integrated PV panels in an office building in central Greece," Applied Energy, Elsevier, vol. 88(3), pages 853-866, March.
    15. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
    16. Barone, G. & Vassiliades, C. & Elia, C. & Savvides, A. & Kalogirou, S., 2023. "Design optimization of a solar system integrated double-skin façade for a clustered housing unit," Renewable Energy, Elsevier, vol. 215(C).
    17. Saadon, Syamimi & Gaillard, Leon & Menezo, Christophe & Giroux-Julien, Stéphanie, 2020. "Exergy, exergoeconomic and enviroeconomic analysis of a building integrated semi-transparent photovoltaic/thermal (BISTPV/T) by natural ventilation," Renewable Energy, Elsevier, vol. 150(C), pages 981-989.
    18. David Valentín & Alfredo Guardo & Eduard Egusquiza & Carme Valero & Pere Alavedra, 2013. "Assessment of the Economic and Environmental Impact of Double Glazed Façade Ventilation Systems in Mediterranean Climates," Energies, MDPI, vol. 6(10), pages 1-19, September.
    19. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    20. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    21. Wenjie Zhang & Tongdan Gong & Shengbing Ma & Jianwei Zhou & Yingbo Zhao, 2021. "Study on the Influence of Mounting Dimensions of PV Array on Module Temperature in Open-Joint Photovoltaic Ventilated Double-Skin Façades," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    22. Shady Attia & Stéphanie Bertrand & Mathilde Cuchet & Siliang Yang & Amir Tabadkani, 2022. "Comparison of Thermal Energy Saving Potential and Overheating Risk of Four Adaptive Façade Technologies in Office Buildings," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    23. Cheng, Xudong & Shi, Zhicheng & Nguyen, Kate & Zhang, Lihai & Zhou, Yong & Zhang, Guomin & Wang, Jinhui & Shi, Long, 2020. "Solar chimney in tunnel considering energy-saving and fire safety," Energy, Elsevier, vol. 210(C).
    24. Li, Yilin & Darkwa, Jo & Kokogiannakis, Georgios & Su, Weiguang, 2019. "Phase change material blind system for double skin façade integration: System development and thermal performance evaluation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    25. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xiaoqing & Wei, An & Zou, Shaokun & Dong, Qichang & Qi, Jiacheng & Song, Ye & Shi, Long, 2024. "Controlling naturally ventilated double-skin façade to reduce energy consumption in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiaoqing & Wei, An & Zou, Shaokun & Dong, Qichang & Qi, Jiacheng & Song, Ye & Shi, Long, 2024. "Controlling naturally ventilated double-skin façade to reduce energy consumption in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Tao, Yao & Yan, Yihuan & Chew, Michael Yit Lin & Tu, Jiyuan & Shi, Long, 2023. "A theoretical model of natural ventilation enhanced by solar thermal energy in double-skin façade," Energy, Elsevier, vol. 276(C).
    4. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    5. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
    6. Tao, Yao & Zhang, Haihua & Zhang, Lili & Zhang, Guomin & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double-skin façade in buildings," Renewable Energy, Elsevier, vol. 167(C), pages 184-198.
    7. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    8. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    9. Liu, Xingjiang & Shen, Chao & Bo, Rui & Wang, Julian & Ardabili, Neda Ghaeili, 2023. "Experimental investigation on the operation performance of photovoltaic double skin façade in winter," Energy, Elsevier, vol. 283(C).
    10. Zhang, Haihua & Tao, Yao & Zhang, Guomin & Li, Jie & Setunge, Sujeeva & Shi, Long, 2022. "Impacts of storey number of buildings on solar chimney performance: A theoretical and numerical approach," Energy, Elsevier, vol. 261(PA).
    11. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    12. Huang, Youbo & Liu, Xi & Shi, Long & Dong, Bingyan & Zhong, Hua, 2023. "Enhancing solar chimney performance in urban tunnels: Investigating the impact factors through experimental and theoretical model analysis," Energy, Elsevier, vol. 282(C).
    13. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    14. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    15. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Su, Xiaosong & Lian, Jinbu & Luo, Yongwei, 2018. "Coupled thermal-electrical-optical analysis of a photovoltaic-blind integrated glazing façade," Applied Energy, Elsevier, vol. 228(C), pages 1870-1886.
    16. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    17. Tao, Yao & Huang, Hua & Fang, Xiang & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Solar radiation on naturally ventilated double skin facade in real climates: The impact of solar incidence angle," Renewable Energy, Elsevier, vol. 232(C).
    18. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    19. Afaq Hyder Chohan & Jihad Awad, 2022. "Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    20. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s136403212300922x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.