IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp1-12.html
   My bibliography  Save this article

Performance enhancement of double skin facades in hot and dry climates using wind parameters

Author

Listed:
  • Nasrollahi, Nazanin
  • Salehi, Majid

Abstract

This research aims to demonstrate a model of Double Skin Facade (DSF) that functions efficiently in hot and dry climates. Knowing that DSF performs well in winter at hot and dry climates as thermal mass is needed. However, this method during summer evinces overheating between the two skin layers. This paper introduces some modifications in order to improve the functioning of DSF when overheating occurs in the cavity between the two skin layers. Overheating in DSF can be prevented by using properties of wind pressure. Considering the condition of the wind flow, different geometric forms in the upper part of DSF as well as its lower portion of window opening are evaluated. The numerical method and Computational Fluid Dynamics (CFD) simulations are used in order to evaluate the hypotheses of this study. The obtained results of this research suggest that dividing the cavity space into smaller parts makes no significant changes. Designing an additional channel in the northern part of the models, directly impacts the functionality of DSF, which can be concluded to be very efficient. Finally, by increasing airflow velocity within the cavity, it is possible to decrease the problems of using DSF in hot and dry climates.

Suggested Citation

  • Nasrollahi, Nazanin & Salehi, Majid, 2015. "Performance enhancement of double skin facades in hot and dry climates using wind parameters," Renewable Energy, Elsevier, vol. 83(C), pages 1-12.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1-12
    DOI: 10.1016/j.renene.2015.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115002992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shameri, M.A. & Alghoul, M.A. & Sopian, K. & Zain, M. Fauzi M. & Elayeb, Omkalthum, 2011. "Perspectives of double skin façade systems in buildings and energy saving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1468-1475, April.
    2. Zhou, Juan & Chen, Youming, 2010. "A review on applying ventilated double-skin facade to buildings in hot-summer and cold-winter zone in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1321-1328, May.
    3. De Gracia, Alvaro & Castell, Albert & Navarro, Lidia & Oró, Eduard & Cabeza, Luisa F., 2013. "Numerical modelling of ventilated facades: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 539-549.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    2. Tao, Yao & Zhang, Haihua & Zhang, Lili & Zhang, Guomin & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double-skin façade in buildings," Renewable Energy, Elsevier, vol. 167(C), pages 184-198.
    3. Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Berardi, Umberto & Tookey, John & Li, Danny Hin Wa & Kariminia, Shahab, 2016. "Exploring the advantages and challenges of double-skin façades (DSFs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1052-1065.
    4. Dong, Qichang & Zhao, Xiaoqing & Song, Ye & Qi, Jiacheng & Shi, Long, 2024. "Determining the potential risks of naturally ventilated double skin façades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    6. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
    7. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Su, Xiaosong & Lian, Jinbu & Luo, Yongwei, 2018. "Coupled thermal-electrical-optical analysis of a photovoltaic-blind integrated glazing façade," Applied Energy, Elsevier, vol. 228(C), pages 1870-1886.
    8. Tao, Yao & Yan, Yihuan & Chew, Michael Yit Lin & Tu, Jiyuan & Shi, Long, 2023. "A theoretical model of natural ventilation enhanced by solar thermal energy in double-skin façade," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbosa, Sabrina & Ip, Kenneth, 2014. "Perspectives of double skin façades for naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1019-1029.
    2. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    3. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    4. Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Berardi, Umberto & Tookey, John & Li, Danny Hin Wa & Kariminia, Shahab, 2016. "Exploring the advantages and challenges of double-skin façades (DSFs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1052-1065.
    5. Zhao, Xiaoqing & Wei, An & Zou, Shaokun & Dong, Qichang & Qi, Jiacheng & Song, Ye & Shi, Long, 2024. "Controlling naturally ventilated double-skin façade to reduce energy consumption in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    6. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Wang, Xiliang & Liu, Zhongbing & Wu, Zhenghong, 2017. "Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties," Energy, Elsevier, vol. 128(C), pages 163-182.
    7. Ibañez-Puy, María & Vidaurre-Arbizu, Marina & Sacristán-Fernández, José Antonio & Martín-Gómez, César, 2017. "Opaque Ventilated Façades: Thermal and energy performance review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 180-191.
    8. Huang, Baofeng & Wang, Yeqing & Lu, Wensheng & Cheng, Meng, 2022. "Fabrication and energy efficiency of translucent concrete panel for building envelope," Energy, Elsevier, vol. 248(C).
    9. De Gracia, Alvaro & Castell, Albert & Navarro, Lidia & Oró, Eduard & Cabeza, Luisa F., 2013. "Numerical modelling of ventilated facades: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 539-549.
    10. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    11. Pomponi, Francesco & Piroozfar, Poorang A.E. & Southall, Ryan & Ashton, Philip & Farr, Eric. R.P., 2016. "Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1525-1536.
    12. Saroglou, Tanya & Theodosiou, Theodoros & Givoni, Baruch & Meir, Isaac A., 2019. "A study of different envelope scenarios towards low carbon high-rise buildings in the Mediterranean climate - can DSF be part of the solution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Tao, Yao & Zhang, Haihua & Zhang, Lili & Zhang, Guomin & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double-skin façade in buildings," Renewable Energy, Elsevier, vol. 167(C), pages 184-198.
    14. Pourshab, Nasrin & Tehrani, Mehdi Dadkhah & Toghraie, Davood & Rostami, Sara, 2020. "Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings," Energy, Elsevier, vol. 200(C).
    15. Navarro, Lidia & de Gracia, Alvaro & Colclough, Shane & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems," Renewable Energy, Elsevier, vol. 88(C), pages 526-547.
    16. Shilei Lu & Minchao Fan & Yiqun Zhao, 2018. "A System to Pre-Evaluate the Suitability of Energy-Saving Technology for Green Buildings," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    17. Saadon, Syamimi & Gaillard, Leon & Giroux-Julien, Stéphanie & Ménézo, Christophe, 2016. "Simulation study of a naturally-ventilated building integrated photovoltaic/thermal (BIPV/T) envelope," Renewable Energy, Elsevier, vol. 87(P1), pages 517-531.
    18. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    19. Tao, Yao & Yan, Yihuan & Chew, Michael Yit Lin & Tu, Jiyuan & Shi, Long, 2023. "A theoretical model of natural ventilation enhanced by solar thermal energy in double-skin façade," Energy, Elsevier, vol. 276(C).
    20. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.