IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8020-d692693.html
   My bibliography  Save this article

Energy Savings and Carbon Emission Mitigation Prospective of Building’s Glazing Variety, Window-to-Wall Ratio and Wall Thickness

Author

Listed:
  • Saboor Shaik

    (School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Kirankumar Gorantla

    (Department of Mechanical Engineering, Sasi Institute of Technology and Engineering, Tadepalligudem 534101, India)

  • Aritra Ghosh

    (College of Engineering, Mathematics and Physical Sciences, Renewable Energy, University of Exeter, Cornwall TR10 9FE, UK)

  • Chelliah Arumugam

    (School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Venkata Ramana Maduru

    (School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India)

Abstract

Strategic selection of glazing, its window-to-wall ratio, and wall thickness of building reduce the energy consumption in the built environment. This paper presents the experimental results of solar optical properties of five glasses: clear, tinted bronze, tinted green, bronze reflective, and polymer dispersed liquid crystal glasses. Laterite room models were modeled with four different thicknesses and four different glasses using Design Builder, and thermal simulation tests were carried out using Energy Plus. The energy savings and carbon emission mitigation prospective of a building’s glazing variety, window-to-wall ratio (WWR), and wall thickness were investigated. The results revealed that among the five window glasses studied, the polymer dispersed liquid crystal glazing window (PDLCGW) was found to be the most energy-efficient for low heat gain in laterite rooms. The laterite room with 0.23 m wall thickness and 40% PDLCGW WWR reduced 18.9% heat gain in comparison with the laterite room with 0.23 m wall thickness and 40% clear glass WWR. The laterite room of 0.23 m wall thickness with PDLCGW glazing of 40% WWR enhanced cooling cost savings up to USD 31.9 compared to the laterite room of 0.08 m wall thickness with 40% PDLCGW. The laterite room of 0.23 m wall thickness with PDLCGW glazing of 40% WWR also showed improved carbon mitigation of 516 kg of CO 2 /year compared to the 0.23 m wall thickness laterite room of 40% WWR with clear glass glazing. The results also showed that the laterite room with 0.23 m wall thickness and 100% clear glass WWR increased heat gain by 28.2% in comparison with the laterite room with 0.23 m wall thickness and 20% clear glass WWR. The results of this article are essential for the strategic design of buildings for energy saving and emission reduction.

Suggested Citation

  • Saboor Shaik & Kirankumar Gorantla & Aritra Ghosh & Chelliah Arumugam & Venkata Ramana Maduru, 2021. "Energy Savings and Carbon Emission Mitigation Prospective of Building’s Glazing Variety, Window-to-Wall Ratio and Wall Thickness," Energies, MDPI, vol. 14(23), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8020-:d:692693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chi-Ming Lai & Yao-Hong Wang, 2011. "Energy-Saving Potential of Building Envelope Designs in Residential Houses in Taiwan," Energies, MDPI, vol. 4(11), pages 1-16, November.
    2. Ucar, Aynur, 2010. "Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey," Energy, Elsevier, vol. 35(4), pages 1854-1864.
    3. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    4. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2017. "Effect of sky clearness index on transmission of evacuated (vacuum) glazing," Renewable Energy, Elsevier, vol. 105(C), pages 160-166.
    5. Hee, W.J. & Alghoul, M.A. & Bakhtyar, B. & Elayeb, OmKalthum & Shameri, M.A. & Alrubaih, M.S. & Sopian, K., 2015. "The role of window glazing on daylighting and energy saving in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 323-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghosh, Aritra, 2023. "Investigation of vacuum-integrated switchable polymer dispersed liquid crystal glazing for smart window application for less energy-hungry building," Energy, Elsevier, vol. 265(C).
    2. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    3. Shaik, Saboor & Maduru, Venkata Ramana & Kontoleon, Karolos J. & Arıcı, Müslüm & Gorantla, Kirankumar & Afzal, Asif, 2022. "Building glass retrofitting strategies in hot and dry climates: Cost savings on cooling, diurnal lighting, color rendering, and payback timeframes," Energy, Elsevier, vol. 243(C).
    4. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    5. Dong, Qichang & Zhao, Xiaoqing & Song, Ye & Qi, Jiacheng & Shi, Long, 2024. "Determining the potential risks of naturally ventilated double skin façades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    2. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    3. Zhou, Yuekuan, 2022. "A multi-stage supervised learning optimisation approach on an aerogel glazing system with stochastic uncertainty," Energy, Elsevier, vol. 258(C).
    4. Qiong He & S. Thomas Ng & Md. Uzzal Hossain & Martin Skitmore, 2019. "Energy-Efficient Window Retrofit for High-Rise Residential Buildings in Different Climatic Zones of China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    5. Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2019. "Colour properties and glazing factors evaluation of multicrystalline based semi-transparent Photovoltaic-vacuum glazing for BIPV application," Renewable Energy, Elsevier, vol. 131(C), pages 730-736.
    6. Aritra Ghosh & Abdelhakim Mesloub & Mabrouk Touahmia & Meriem Ajmi, 2021. "Visual Comfort Analysis of Semi-Transparent Perovskite Based Building Integrated Photovoltaic Window for Hot Desert Climate (Riyadh, Saudi Arabia)," Energies, MDPI, vol. 14(4), pages 1-13, February.
    7. Ghosh, Aritra, 2023. "Investigation of vacuum-integrated switchable polymer dispersed liquid crystal glazing for smart window application for less energy-hungry building," Energy, Elsevier, vol. 265(C).
    8. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    9. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    10. Ghosh, A. & Mallick, T.K., 2018. "Evaluation of colour properties due to switching behaviour of a PDLC glazing for adaptive building integration," Renewable Energy, Elsevier, vol. 120(C), pages 126-133.
    11. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    12. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    13. Karolis Banionis & Jurga Kumžienė & Arūnas Burlingis & Juozas Ramanauskas & Valdas Paukštys, 2021. "The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries," Energies, MDPI, vol. 14(6), pages 1-22, March.
    14. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    15. Shaik, Saboor & Maduru, Venkata Ramana & Kirankumar, Gorantla & Arıcı, Müslüm & Ghosh, Aritra & Kontoleon, Karolos J. & Afzal, Asif, 2022. "Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows," Energy, Elsevier, vol. 259(C).
    16. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    17. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    18. Mi-Su Shin & Kyu-Nam Rhee & Ji-Yong Yu & Gun-Joo Jung, 2017. "Determination of Equivalent Thermal Conductivity of Window Spacers in Consideration of Condensation Prevention and Energy Saving Performance," Energies, MDPI, vol. 10(5), pages 1-21, May.
    19. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    20. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8020-:d:692693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.