IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024349.html
   My bibliography  Save this article

Experimental investigation on the operation performance of photovoltaic double skin façade in winter

Author

Listed:
  • Liu, Xingjiang
  • Shen, Chao
  • Bo, Rui
  • Wang, Julian
  • Ardabili, Neda Ghaeili

Abstract

Photovoltaic double skin façade (PV-DSF) offers a versatile solution to address the escalating energy demands of buildings by combining power generation and indoor air temperature adjustment functionalities. Most prior research concentrated on its summer performance, while the winter season receives less attention. This paper concentrates on its operation performance in winter, to provide an experimental framework for its efficient operation. In this regard, the performance of internal circle and thermal buffer mode (both are possible operation modes in winter) were compared via control variable experiments, and the feasibility of mechanical ventilation is also examined regarding the trade-off between the energy consumption of fans and additional energy benefit. These experiments were performed in the full-size experiment rig at Harbin, China, a city with severe cold climate. The experiment results conclusively demonstrate that the internal circle mode can outperform the thermal buffer mode on a cold, sunny day by 10.9%, and the total energy-saving potential can be further increased by 12.6% if fans are activated to enhance cavity airflow. While the experimental data during partly cloudy emphasizes the significance of a suitable operation schedule and shows that PV-DSF can only be switched to internal circle mode when cavity air is fully heated.

Suggested Citation

  • Liu, Xingjiang & Shen, Chao & Bo, Rui & Wang, Julian & Ardabili, Neda Ghaeili, 2023. "Experimental investigation on the operation performance of photovoltaic double skin façade in winter," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024349
    DOI: 10.1016/j.energy.2023.129040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tianyi Chen & Yaning An & Chye Kiang Heng, 2022. "A Review of Building-Integrated Photovoltaics in Singapore: Status, Barriers, and Prospects," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    2. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    3. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Xie, Lei & Wang, Xiliang & Wu, Jing, 2018. "Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season," Energy, Elsevier, vol. 165(PB), pages 326-342.
    4. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Transparent and translucent solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2643-2651.
    5. Weerasinghe, R.P.N.P. & Yang, R.J. & Wakefield, R. & Too, E. & Le, T. & Corkish, R. & Chen, S. & Wang, C., 2021. "Economic viability of building integrated photovoltaics: A review of forty-five (45) non-domestic buildings in twelve (12) western countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    7. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    8. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    9. Zhang, Yang & Yan, Da & Hu, Shan & Guo, Siyue, 2019. "Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach," Energy Policy, Elsevier, vol. 134(C).
    10. Yu, Bendong & Li, Niansi & Ji, Jie & Wang, Chuyao, 2021. "Thermal, electrical and purification performance of a novel thermal-catalytic CdTe double-layer breathing window in winter," Renewable Energy, Elsevier, vol. 167(C), pages 313-332.
    11. Ke, Wei & Ji, Jie & Wang, Chuyao & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Lin, Yuan, 2022. "Comparative analysis on the electrical and thermal performance of two CdTe multi-layer ventilated windows with and without a middle PCM layer: A preliminary numerical study," Renewable Energy, Elsevier, vol. 189(C), pages 1306-1323.
    12. Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    14. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    15. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xingjiang & Yang, Haotian & Wang, Chaojie & Shen, Chao & Bo, Rui & Hinkle, Laura & Wang, Julian, 2024. "Semi-experimental investigation on the energy performance of photovoltaic double skin façade with different façade materials," Energy, Elsevier, vol. 295(C).
    2. Zhang, Chengyan & Ji, Jie & Tang, Yayun & Ke, Wei, 2024. "Overall performance investigation of a CdTe double-skin ventilated facade integrated with a thermal catalytic air-type PV/T in heating and cooling seasons," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    2. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    3. Yu, Bendong & Li, Niansi & Ji, Jie & Wang, Chuyao, 2021. "Thermal, electrical and purification performance of a novel thermal-catalytic CdTe double-layer breathing window in winter," Renewable Energy, Elsevier, vol. 167(C), pages 313-332.
    4. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    6. Liu, Xingjiang & Yang, Haotian & Wang, Chaojie & Shen, Chao & Bo, Rui & Hinkle, Laura & Wang, Julian, 2024. "Semi-experimental investigation on the energy performance of photovoltaic double skin façade with different façade materials," Energy, Elsevier, vol. 295(C).
    7. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2023. "Investigation on overall energy performance of a novel multi-functional PV/T window," Applied Energy, Elsevier, vol. 352(C).
    8. Zhang, Chengyan & Ji, Jie & Ke, Wei & Tang, Yayun, 2024. "Comprehensive performance investigation of a novel thermal catalytic semi-transparent PV double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 300(C).
    9. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Wang, Chuyao & Li, Niansi & Gu, Tao & Ji, Jie & Yu, Bendong, 2022. "Design and performance investigation of a novel double-skin ventilated window integrated with air-purifying blind," Energy, Elsevier, vol. 254(PC).
    11. Hossein Arasteh & Wahid Maref & Hamed H. Saber, 2023. "Energy and Thermal Performance Analysis of PCM-Incorporated Glazing Units Combined with Passive and Active Techniques: A Review Study," Energies, MDPI, vol. 16(3), pages 1-42, January.
    12. Ioannidis, Zisis & Rounis, Efstratios-Dimitrios & Athienitis, Andreas & Stathopoulos, Ted, 2020. "Double skin façade integrating semi-transparent photovoltaics: Experimental study on forced convection and heat recovery," Applied Energy, Elsevier, vol. 278(C).
    13. Zhang, Chengyan & Ji, Jie & Wang, Chuyao & Ke, Wei & Xie, Hao & Yu, Bendong, 2022. "Experimental and numerical studies on the thermal and electrical performance of a CdTe ventilated window integrated with vacuum glazing," Energy, Elsevier, vol. 244(PB).
    14. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    15. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    16. Shi, Shaohang & Zhu, Ning & Wu, Shuangdui & Song, Yehao, 2024. "Evaluation and analysis of transmitted daylight color quality for different colored semi-transparent PV glazing," Renewable Energy, Elsevier, vol. 222(C).
    17. Li, Xue & Sun, Yanyi & Liu, Xiao & Ming, Yang & Wu, Yupeng, 2024. "Development of a comprehensive method to estimate the optical, thermal and electrical performance of a complex PV window for building integration," Energy, Elsevier, vol. 294(C).
    18. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    19. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    20. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Review analysis of COVID-19 impact on electricity demand for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.