IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011923.html
   My bibliography  Save this article

Solar radiation on naturally ventilated double skin facade in real climates: The impact of solar incidence angle

Author

Listed:
  • Tao, Yao
  • Huang, Hua
  • Fang, Xiang
  • Yan, Yihuan
  • Tu, Jiyuan
  • Shi, Long

Abstract

Although the angular dependence of optical properties has long been recognised in transparent glazing facades, the impact of such dependence on natural ventilation between glazing has not been widely studied, especially in building facades with high solar incident angles. To better cope with such properties with the prevailing implementation of transparent building envelopes, this study investigated the effects of high solar incidence angles for vertical building facades through theoretical and numerical methods. The theoretical model validates the features of the optical properties simulated by the numerical model, supporting the numerical model's capability of revealing the radiation reflection, absorption, and transmission when multi-reflection is present. Then, such angular impact is studied with typical seasonal data in three cities, namely Shanghai, Melbourne and Chicago. Results firstly revealed the discrepancies between considering or ignoring multi-reflection between two glazing facades at varying incidence angles. Due to the opposite variation trend in reflectivity and transmissivity over angles, there is a critical solar incidence angle at 75° when multi-reflection's impact on natural ventilation reaches its highest. After that, the influence is reduced to its minimum. Identifying this angle helped highlight the enhanced natural flow due to realistic angular-dependent reflections between transparent panes, namely, under-estimation occurs if the angular dependence is not considered in the setting of optical properties. The analysis in three cities also revealed the climatic and locational impact of the angular impacts on ventilation rates. By addressing the impact on the optical and thermal performance of transparent facades, the dynamic variation of solar conditions can be more accurately integrated into passive building designs.

Suggested Citation

  • Tao, Yao & Huang, Hua & Fang, Xiang & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Solar radiation on naturally ventilated double skin facade in real climates: The impact of solar incidence angle," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011923
    DOI: 10.1016/j.renene.2024.121124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.