IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p115-d125356.html
   My bibliography  Save this article

Solar Heat Gain Coefficient Analysis of a Slim-Type Double Skin Window System: Using an Experimental and a Simulation Method

Author

Listed:
  • Kyung-joo Cho

    (Korea Institute of Civil Engineering & Building Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 10223, Korea)

  • Dong-woo Cho

    (Korea Institute of Civil Engineering & Building Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 10223, Korea)

Abstract

Double skin facade systems are known to be capable of preventing overheating in curtain wall buildings to a certain degree. The system induces the efficient blocking of sunlight using a center blind during the summer season. Moreover, it enables overheated air in the cavity layer to be sent outdoors, resulting in a reduction of the use of energy for cooling. However, double skin facade systems can be problematic, in that they must be opened according to seasonal conditions to achieve greater energy consumption efficiencies. In current double skin facade systems, the width of the cavity layer was too wide for residents to easily operate the system. When considering this, research on an easy-to-open 270 mm slim-type double skin window (SDSW) was undertaken in order to confirm its energy efficient performance. First, official testing based on the KS L 9107 Standard was undertaken to analyze solar heat gain coefficients (SHGC) and the cavity air temperatures, according to the open and close conditions of the SDSW’s external windows, enabling an analysis of the effect that the opening of windows had on reducing cooling energy needs. Next, SHGCs and cavity air temperatures were studied according to the different opening conditions of the SDSW’s external window to analyze the most optimal effects on cooling energy reductions by Computational Fluid Dynamics (CFD).

Suggested Citation

  • Kyung-joo Cho & Dong-woo Cho, 2018. "Solar Heat Gain Coefficient Analysis of a Slim-Type Double Skin Window System: Using an Experimental and a Simulation Method," Energies, MDPI, vol. 11(1), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:115-:d:125356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Juan & Chen, Youming, 2010. "A review on applying ventilated double-skin facade to buildings in hot-summer and cold-winter zone in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1321-1328, May.
    2. Seok-Hyun Kim & Kyung-Ju Shin & Bo-Eun Choi & Jae-Hun Jo & Soo Cho & Young-Hum Cho, 2015. "A Study on the Variation of Heating and Cooling Load According to the Use of Horizontal Shading and Venetian Blinds in Office Buildings in Korea," Energies, MDPI, vol. 8(2), pages 1-18, February.
    3. Jordi Parra & Alfredo Guardo & Eduard Egusquiza & Pere Alavedra, 2015. "Thermal Performance of Ventilated Double Skin Façades with Venetian Blinds," Energies, MDPI, vol. 8(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiang & Saelens, Dirk & Roels, Staf, 2022. "Estimating dynamic solar gains from on-site measured data: An ARX modelling approach," Applied Energy, Elsevier, vol. 321(C).
    2. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    3. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
    4. Zhiqiang Wang & Qi Tian & Jie Jia, 2022. "The Convective Heat Transfer Performance and Structural Optimization of the Cavity in Energy-Saving Thermal Insulation Windows under Cold Air Penetration Condition," Energies, MDPI, vol. 15(7), pages 1-21, March.
    5. Dong, Qichang & Zhao, Xiaoqing & Song, Ye & Qi, Jiacheng & Shi, Long, 2024. "Determining the potential risks of naturally ventilated double skin façades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Hooman Mehdizadeh-Rad & Taimoor Ahmad Choudhry & Anne W. M. Ng & Zohreh Rajabi & Muhammad Farooq Rais & Asad Zia & Muhammad Atiq Ur Rehman Tariq, 2022. "An Energy Performance Evaluation of Commercially Available Window Glazing in Darwin’s Tropical Climate," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    7. Shiva Najaf Khosravi & Ardeshir Mahdavi, 2021. "A CFD-Based Parametric Thermal Performance Analysis of Supply Air Ventilated Windows," Energies, MDPI, vol. 14(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourshab, Nasrin & Tehrani, Mehdi Dadkhah & Toghraie, Davood & Rostami, Sara, 2020. "Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings," Energy, Elsevier, vol. 200(C).
    2. Heangwoo Lee & Janghoo Seo, 2018. "Development of Window-Mounted Air Cap Roller Module," Energies, MDPI, vol. 11(7), pages 1-14, July.
    3. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    4. Barbosa, Sabrina & Ip, Kenneth, 2014. "Perspectives of double skin façades for naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1019-1029.
    5. Soo Cho & Seok-Hyun Kim, 2017. "Analysis of the Performance of Vacuum Glazing in Office Buildings in Korea: Simulation and Experimental Studies," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    6. Tuğba İnan & Tahsin Başaran & Aytunç Erek, 2017. "Experimental and Numerical Investigation of Forced Convection in a Double Skin Façade," Energies, MDPI, vol. 10(9), pages 1-15, September.
    7. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    8. De Gracia, Alvaro & Castell, Albert & Navarro, Lidia & Oró, Eduard & Cabeza, Luisa F., 2013. "Numerical modelling of ventilated facades: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 539-549.
    9. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    10. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    11. Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Berardi, Umberto & Tookey, John & Li, Danny Hin Wa & Kariminia, Shahab, 2016. "Exploring the advantages and challenges of double-skin façades (DSFs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1052-1065.
    12. Shilei Lu & Minchao Fan & Yiqun Zhao, 2018. "A System to Pre-Evaluate the Suitability of Energy-Saving Technology for Green Buildings," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    13. Pau Fonseca i Casas & Antoni Fonseca i Casas & Nuria Garrido-Soriano & Alfonso Godoy & Wendys-Carolina Pujols & Jesus Garcia, 2017. "Solution Validation for a Double Façade Prototype," Energies, MDPI, vol. 10(12), pages 1-19, December.
    14. Nasrollahi, Nazanin & Salehi, Majid, 2015. "Performance enhancement of double skin facades in hot and dry climates using wind parameters," Renewable Energy, Elsevier, vol. 83(C), pages 1-12.
    15. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    16. Tao, Yao & Yan, Yihuan & Chew, Michael Yit Lin & Tu, Jiyuan & Shi, Long, 2023. "A theoretical model of natural ventilation enhanced by solar thermal energy in double-skin façade," Energy, Elsevier, vol. 276(C).
    17. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    18. Chang Heon Cheong & Taeyeon Kim & Seung-Bok Leigh, 2015. "Lifecycle CO 2 Reduction by Implementing Double Window Casement Systems in Residential Units in Korea," Energies, MDPI, vol. 8(2), pages 1-17, February.
    19. Yingying Zhou & Christiane Margerita Herr, 2023. "A Review of Advanced Façade System Technologies to Support Net-Zero Carbon High-Rise Building Design in Subtropical China," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    20. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:115-:d:125356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.