IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v172y2023ics1364032122009297.html
   My bibliography  Save this article

Experimental investigation of the control strategy of high load extension under iso-butanol/biodiesel dual-fuel intelligent charge compression ignition (ICCI) mode

Author

Listed:
  • Zhao, Wenbin
  • Wu, Haoqing
  • Mi, Shijie
  • Zhang, Yaoyuan
  • He, Zhuoyao
  • Qian, Yong
  • Lu, Xingcai

Abstract

Advanced combustion modes have shown the great advantages to achieve high thermal efficiency and low pollution emissions. However, lack of sufficiently control over combustion phasing of heat release under high and ultra-high engine load limits the commercial application. In this paper, an experimental investigation had been conducted to explore the control strategy under iso-butanol/biodiesel dual-fuel intelligent charge compression ignition (ICCI) mode for achieving the high engine load extension. The criteria is used to identify clean combustion under high load expansion, which the indicated thermal efficiency is 45% or higher, and nitrogen oxides (NOx) emissions should be below 400 ppm. The results show that stable and controllable ICCI operation is obtained under high and ultra-high engine load. An iso-butanol single direct injection in the intake stroke, biodiesel double direct injection strategy in the compression stroke and near top dead center, respectively, offers a very competitive pathway to expand the engine load with clean and highly efficient combustion, in which the maximum indicated thermal efficiency reaches 49.9% and NOx emissions below 100 ppm at the indicated mean effective pressure (IMEP) of 12 bar, and the maximum engine load reaches 18 bar IMEP (96% engine load). At higher engine load, lower iso-butanol energy ratio is used to reduce the in-cylinder pressure and maximum pressure rise rate, while punishes the engine thermal efficiency and emissions. With the iso-butanol energy ratio increase, the lower in-cylinder reactivity leads to the increase of incomplete combustion products. In addition, the exhaust gas recirculation (EGR) is essential on the reduction of NOx emissions, and the second biodiesel injection duration is increased with the engine load increase for the purpose of the load expansion.

Suggested Citation

  • Zhao, Wenbin & Wu, Haoqing & Mi, Shijie & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2023. "Experimental investigation of the control strategy of high load extension under iso-butanol/biodiesel dual-fuel intelligent charge compression ignition (ICCI) mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:rensus:v:172:y:2023:i:c:s1364032122009297
    DOI: 10.1016/j.rser.2022.113048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122009297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.113048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Giakoumis, Evangelos G. & Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D., 2016. "Combustion noise radiation during dynamic diesel engine operation including effects of various biofuel blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1099-1113.
    3. Li, Jing & Yu, Xiao & Xie, Jingcheng & Yang, Wenming, 2020. "Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio," Energy, Elsevier, vol. 192(C).
    4. Ghadikolaei, Meisam Ahmadi, 2016. "Effect of alcohol blend and fumigation on regulated and unregulated emissions of IC engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1440-1495.
    5. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    6. Lu, Xingcai & Zhou, Xiaoxin & Ji, Libin & Yang, Zheng & Han, Dong & Huang, Chen & Huang, Zhen, 2013. "Experimental studies on the dual-fuel sequential combustion and emission simulation," Energy, Elsevier, vol. 51(C), pages 358-373.
    7. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Kumar, Pravin & Rehman, A., 2016. "Bio-diesel in homogeneous charge compression ignition (HCCI) combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 536-550.
    9. Carbot-Rojas, D.A. & Escobar-Jiménez, R.F. & Gómez-Aguilar, J.F. & Téllez-Anguiano, A.C., 2017. "A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1070-1085.
    10. Hulwan, Dattatray Bapu & Joshi, Satishchandra V., 2011. "Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content," Applied Energy, Elsevier, vol. 88(12), pages 5042-5055.
    11. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier & Durrett, Russell, 2014. "Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept," Applied Energy, Elsevier, vol. 134(C), pages 90-101.
    12. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Shahabuddin, M. & Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Mofijur, M., 2013. "Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 623-632.
    14. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    15. Qian, Yong & Wang, Xiaole & Zhu, Lifeng & Lu, Xingcai, 2015. "Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels," Energy, Elsevier, vol. 88(C), pages 584-594.
    16. Zhou, J.H. & Cheung, C.S. & Leung, C.W., 2014. "Combustion, performance, regulated and unregulated emissions of a diesel engine with hydrogen addition," Applied Energy, Elsevier, vol. 126(C), pages 1-12.
    17. Algayyim, Sattar Jabbar Murad & Wandel, Andrew P. & Yusaf, Talal & Hamawand, Ihsan, 2017. "The impact of n-butanol and iso-butanol as components of butanol-acetone (BA) mixture-diesel blend on spray, combustion characteristics, engine performance and emission in direct injection diesel engi," Energy, Elsevier, vol. 140(P1), pages 1074-1086.
    18. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
    3. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    4. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    5. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    7. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    8. Zuo, Lei & Wang, Junfeng & Mei, Deqing & Dai, Shengchao & Adu-Mensah, Derick, 2022. "Experimental investigation on combustion and (regulated and unregulated) emissions performance of a common-rail diesel engine using partially hydrogenated biodiesel-ethanol-diesel ternary blend," Renewable Energy, Elsevier, vol. 185(C), pages 1272-1283.
    9. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Yung, Ka-Fu, 2018. "Study of combustion, performance and emissions of diesel engine fueled with diesel/biodiesel/alcohol blends having the same oxygen concentration," Energy, Elsevier, vol. 157(C), pages 258-269.
    12. Wang, Wenchao & Li, Fashe & Wang, Hua, 2023. "Numerical simulation study on the effect of different oxygen-enrichment atmospheres on diesel combustion," Energy, Elsevier, vol. 266(C).
    13. Li, Jing & Ye, Lan & Gong, Shiqi & Deng, Xiaorong & Wang, Shuo & Liu, Rui & Yang, Wenming, 2024. "Review on the combustion progress and engine application of tailor-made fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Xiaoqing Zhang & Tie Li & Pengfei Ma & Bin Wang, 2017. "Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry," Energies, MDPI, vol. 10(12), pages 1-13, December.
    15. Ismail, Tamer M. & Lu, Ding & Ramzy, Khaled & Abd El-Salam, M. & Yu, Guangsuo & Elkady, M.A., 2019. "Experimental and theoretical investigation on the performance of a biodiesel-powered engine from plant seeds in Egypt," Energy, Elsevier, vol. 189(C).
    16. D´Agosto, Márcio de Almeida & da Silva, Marcelino Aurélio Vieira & Franca, Luíza Santana & de Oliveira, Cíntia Machado & Alexandre, Manuel Oliveira Lemos & da Costa Marques, Luiz Guilherme & Murta, Au, 2017. "Comparative study of emissions from stationary engines using biodiesel made from soybean oil, palm oil and waste frying oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1376-1392.
    17. Qian, Yong & Li, Hua & Han, Dong & Ji, Libin & Huang, Zhen & Lu, Xingcai, 2016. "Octane rating effects of direct injection fuels on dual fuel HCCI-DI stratified combustion mode with port injection of n-heptane," Energy, Elsevier, vol. 111(C), pages 1003-1016.
    18. Qian, Yong & Wang, Xiaole & Zhu, Lifeng & Lu, Xingcai, 2015. "Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels," Energy, Elsevier, vol. 88(C), pages 584-594.
    19. Thomas, Justin Jacob & Nagarajan, G. & Sabu, V.R. & Manojkumar, C.V. & Sharma, Vikas, 2022. "Performance and emissions of hexanol-biodiesel fuelled RCCI engine with double injection strategies," Energy, Elsevier, vol. 253(C).
    20. Justas Žaglinskis & Alfredas Rimkus, 2023. "Research on the Performance Parameters of a Compression-Ignition Engine Fueled by Blends of Diesel Fuel, Rapeseed Methyl Ester and Hydrotreated Vegetable Oil," Sustainability, MDPI, vol. 15(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:172:y:2023:i:c:s1364032122009297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.