IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p4876-4889.html
   My bibliography  Save this article

Artificial neural network analysis of Moroccan solar potential

Author

Listed:
  • Ouammi, Ahmed
  • Zejli, Driss
  • Dagdougui, Hanane
  • Benchrifa, Rachid

Abstract

An artificial neural network (ANN) model is used to forecast the annual and monthly solar irradiation in Morocco. Solar irradiation data are taken from the new Satellite Application Facility on Climate Monitoring (CM-SAF)-PVGIS database. The database represents a total of 12 years of data from 1998 to 2010. In this paper, the data are inferred using an ANN algorithm to establish a forward/reverse correspondence between the longitude, latitude, elevation and solar irradiation. Specifically, for the ANN model, a three-layered, back-propagation standard ANN classifier is considered consisting of three layers: input, hidden and output layer. The learning set consists of the normalised longitude, latitude, elevation and the normalised mean annual and monthly solar irradiation of 41 Moroccan sites. The testing set consists of patterns just represented by the input component, while the output component is left unknown and its value results from the ANN algorithm for that specific input. The results are given in the form of the annual and monthly maps. They indicate that the method could be used by researchers or engineers to provide helpful information for decision makers in terms of sites selection, design and planning of new solar plants.

Suggested Citation

  • Ouammi, Ahmed & Zejli, Driss & Dagdougui, Hanane & Benchrifa, Rachid, 2012. "Artificial neural network analysis of Moroccan solar potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4876-4889.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4876-4889
    DOI: 10.1016/j.rser.2012.03.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112002559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.03.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouammi, Ahmed & Sacile, Roberto & Zejli, Driss & Mimet, Abdelaziz & Benchrifa, Rachid, 2010. "Sustainability of a wind power plant: Application to different Moroccan sites," Energy, Elsevier, vol. 35(10), pages 4226-4236.
    2. Sözen, Adnan & Arcaklioglu, Erol & Özalp, Mehmet & Kanit, E. Galip, 2004. "Use of artificial neural networks for mapping of solar potential in Turkey," Applied Energy, Elsevier, vol. 77(3), pages 273-286, March.
    3. Fritzsche, Kerstin & Zejli, Driss & Tänzler, Dennis, 2011. "The relevance of global energy governance for Arab countries: The case of Morocco," Energy Policy, Elsevier, vol. 39(8), pages 4497-4506, August.
    4. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    5. Alam, Shah & Kaushik, S.C. & Garg, S.N., 2009. "Assessment of diffuse solar energy under general sky condition using artificial neural network," Applied Energy, Elsevier, vol. 86(4), pages 554-564, April.
    6. Dorvlo, Atsu S. S. & Jervase, Joseph A. & Al-Lawati, Ali, 2002. "Solar radiation estimation using artificial neural networks," Applied Energy, Elsevier, vol. 71(4), pages 307-319, April.
    7. Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
    8. Miguel, A.F. & Silva, A., 2010. "Solar irradiation in diffusely enclosures with partitions," Applied Energy, Elsevier, vol. 87(3), pages 836-842, March.
    9. Cellura, M. & Cirrincione, G. & Marvuglia, A. & Miraoui, A., 2008. "Wind speed spatial estimation for energy planning in Sicily: A neural kriging application," Renewable Energy, Elsevier, vol. 33(6), pages 1251-1266.
    10. Ermis, K. & Midilli, A. & Dincer, I. & Rosen, M.A., 2007. "Artificial neural network analysis of world green energy use," Energy Policy, Elsevier, vol. 35(3), pages 1731-1743, March.
    11. Almonacid, F. & Rus, C. & Pérez, P.J. & Hontoria, L., 2009. "Estimation of the energy of a PV generator using artificial neural network," Renewable Energy, Elsevier, vol. 34(12), pages 2743-2750.
    12. Fadare, D.A., 2009. "Modelling of solar energy potential in Nigeria using an artificial neural network model," Applied Energy, Elsevier, vol. 86(9), pages 1410-1422, September.
    13. Riahy, G.H. & Abedi, M., 2008. "Short term wind speed forecasting for wind turbine applications using linear prediction method," Renewable Energy, Elsevier, vol. 33(1), pages 35-41.
    14. Bilgili, Mehmet & Sahin, Besir & Yasar, Abdulkadir, 2007. "Application of artificial neural networks for the wind speed prediction of target station using reference stations data," Renewable Energy, Elsevier, vol. 32(14), pages 2350-2360.
    15. Carolin Mabel, M. & Fernandez, E., 2008. "Analysis of wind power generation and prediction using ANN: A case study," Renewable Energy, Elsevier, vol. 33(5), pages 986-992.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Voyant, Cyril & Paoli, Christophe & Muselli, Marc & Nivet, Marie-Laure, 2013. "Multi-horizon solar radiation forecasting for Mediterranean locations using time series models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 44-52.
    2. Khaoula Ghefiri & Aitor J. Garrido & Eugen Rusu & Soufiene Bouallègue & Joseph Haggège & Izaskun Garrido, 2018. "Fuzzy Supervision Based-Pitch Angle Control of a Tidal Stream Generator for a Disturbed Tidal Input," Energies, MDPI, vol. 11(11), pages 1-21, November.
    3. Heo, Jae & Song, Kwonsik & Han, SangUk & Lee, Dong-Eun, 2021. "Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting," Applied Energy, Elsevier, vol. 295(C).
    4. Allouhi, Amine & Kousksou, Tarik & Jamil, Abdelmajid & El Rhafiki, Tarik & Mourad, Youssef & Zeraouli, Youssef, 2015. "Economic and environmental assessment of solar air-conditioning systems in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 770-781.
    5. Mohanty, Sthitapragyan & Patra, Prashanta Kumar & Sahoo, Sudhansu Sekhar, 2016. "Prediction and application of solar radiation with soft computing over traditional and conventional approach – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 778-796.
    6. Mahia, Ramon & de Arce, Rafael & Medina, Eva, 2014. "Assessing the future of a CSP industry in Morocco," Energy Policy, Elsevier, vol. 69(C), pages 586-597.
    7. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    8. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    9. Majumdar, Debaleena & Pasqualetti, Martin J., 2019. "Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA," Renewable Energy, Elsevier, vol. 134(C), pages 1213-1231.
    10. Yadav, Amit Kumar & Chandel, S.S., 2015. "Solar energy potential assessment of western Himalayan Indian state of Himachal Pradesh using J48 algorithm of WEKA in ANN based prediction model," Renewable Energy, Elsevier, vol. 75(C), pages 675-693.
    11. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    12. Kousksou, T. & Allouhi, A. & Belattar, M. & Jamil, A. & El Rhafiki, T. & Arid, A. & Zeraouli, Y., 2015. "Renewable energy potential and national policy directions for sustainable development in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 46-57.
    13. Kumar, Rajesh & Aggarwal, R.K. & Sharma, J.D., 2015. "Comparison of regression and artificial neural network models for estimation of global solar radiations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1294-1299.
    14. Kheradmanda, Saeid & Nematollahi, Omid & Ayoobia, Ahmad Reza, 2016. "Clearness index predicting using an integrated artificial neural network (ANN) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1357-1365.
    15. Bouhal, T. & Agrouaz, Y. & Kousksou, T. & Allouhi, A. & El Rhafiki, T. & Jamil, A. & Bakkas, M., 2018. "Technical feasibility of a sustainable Concentrated Solar Power in Morocco through an energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1087-1095.
    16. El Ydrissi, Massaab & Ghennioui, Hicham & Bennouna, El Ghali & Farid, Abdi, 2020. "Techno-economic study of the impact of mirror slope errors on the overall optical and thermal efficiencies- case study: Solar parabolic trough concentrator evaluation under semi-arid climate," Renewable Energy, Elsevier, vol. 161(C), pages 293-308.
    17. Mahdavi, Meisam & Jurado, Francisco & Ramos, Ricardo Alan Verdú & Awaafo, Augustine, 2023. "Hybrid biomass, solar and wind electricity generation in rural areas of Fez-Meknes region in Morocco considering water consumption of animals and anaerobic digester," Applied Energy, Elsevier, vol. 343(C).
    18. Qin, Wenmin & Wang, Lunche & Lin, Aiwen & Zhang, Ming & Xia, Xiangao & Hu, Bo & Niu, Zigeng, 2018. "Comparison of deterministic and data-driven models for solar radiation estimation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 579-594.
    19. Anamika, & Peesapati, Rajagopal & Kumar, Niranjan, 2016. "Estimation of GSR to ascertain solar electricity cost in context of deregulated electricity markets," Renewable Energy, Elsevier, vol. 87(P1), pages 353-363.
    20. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
    21. Kousksou, T. & Allouhi, A. & Belattar, M. & Jamil, A. & El Rhafiki, T. & Zeraouli, Y., 2015. "Morocco's strategy for energy security and low-carbon growth," Energy, Elsevier, vol. 84(C), pages 98-105.
    22. Žalik, Mitja & Mongus, Domen & Lukač, Niko, 2024. "High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning," Renewable Energy, Elsevier, vol. 222(C).
    23. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almonacid, F. & Fernández, Eduardo F. & Rodrigo, P. & Pérez-Higueras, P.J. & Rus-Casas, C., 2013. "Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network," Energy, Elsevier, vol. 53(C), pages 165-172.
    2. Dahmani, Kahina & Notton, Gilles & Voyant, Cyril & Dizene, Rabah & Nivet, Marie Laure & Paoli, Christophe & Tamas, Wani, 2016. "Multilayer Perceptron approach for estimating 5-min and hourly horizontal global irradiation from exogenous meteorological data in locations without solar measurements," Renewable Energy, Elsevier, vol. 90(C), pages 267-282.
    3. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    4. Janjai, Serm & Plaon, Piyanuch, 2011. "Estimation of sky luminance in the tropics using artificial neural networks: Modeling and performance comparison with the CIE model," Applied Energy, Elsevier, vol. 88(3), pages 840-847, March.
    5. Fadare, D.A., 2010. "The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria," Applied Energy, Elsevier, vol. 87(3), pages 934-942, March.
    6. Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.
    7. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    8. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    9. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    10. Jung, Sungmoon & Kwon, Soon-Duck, 2013. "Weighted error functions in artificial neural networks for improved wind energy potential estimation," Applied Energy, Elsevier, vol. 111(C), pages 778-790.
    11. Cadenas, E. & Jaramillo, O.A. & Rivera, W., 2010. "Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method," Renewable Energy, Elsevier, vol. 35(5), pages 925-930.
    12. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    13. Yeo, In-Ae & Yee, Jurng-Jae, 2014. "A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artifi," Applied Energy, Elsevier, vol. 119(C), pages 99-117.
    14. Kılıç, Fatih & Yılmaz, İbrahim Halil & Kaya, Özge, 2021. "Adaptive co-optimization of artificial neural networks using evolutionary algorithm for global radiation forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 176-190.
    15. Jabar H. Yousif & Hussein A. Kazem & John Boland, 2017. "Predictive Models for Photovoltaic Electricity Production in Hot Weather Conditions," Energies, MDPI, vol. 10(7), pages 1-19, July.
    16. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.
    17. Purohit, Ishan & Purohit, Pallav, 2015. "Inter-comparability of solar radiation databases in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 735-747.
    18. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    19. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    20. Hussain, Sajid & Al-Alili, Ali, 2016. "A new approach for model validation in solar radiation using wavelet, phase and frequency coherence analysis," Applied Energy, Elsevier, vol. 164(C), pages 639-649.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4876-4889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.