IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i12p2743-2750.html
   My bibliography  Save this article

Estimation of the energy of a PV generator using artificial neural network

Author

Listed:
  • Almonacid, F.
  • Rus, C.
  • Pérez, P.J.
  • Hontoria, L.

Abstract

The integration of grid-connected photovoltaic (GCPVS) systems into urban buildings is very popular in industrialized countries. Many countries enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. A previous method, based on artificial neural networks (ANNs), has been developed to electrical characterisation of PV modules. This method was able to generate V–I curves of si-crystalline PV modules for any irradiance and module cell temperature. The results showed that the proposed ANN introduced a good accurate prediction for si-crystalline PV modules performance when compared with the measured values. Now, this method, based on ANNs, is going to be applied to obtain a suitable value of the power provided by a photovoltaic installation. Specifically this method is going to be applied to obtain the power provided by a particular installation, the “Univer generator”, since modules used in these works were the same as the ones used in this photovoltaic generator.

Suggested Citation

  • Almonacid, F. & Rus, C. & Pérez, P.J. & Hontoria, L., 2009. "Estimation of the energy of a PV generator using artificial neural network," Renewable Energy, Elsevier, vol. 34(12), pages 2743-2750.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2743-2750
    DOI: 10.1016/j.renene.2009.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109002638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Almonacid, F. & Rus, C. & Hontoria, L. & Fuentes, M. & Nofuentes, G., 2009. "Characterisation of Si-crystalline PV modules by artificial neural networks," Renewable Energy, Elsevier, vol. 34(4), pages 941-949.
    2. Drif, M. & Pérez, P.J. & Aguilera, J. & Aguilar, J.D., 2008. "A new estimation method of irradiance on a partially shaded PV generator in grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 33(9), pages 2048-2056.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinpeng Liu & Yun Long & Xiaohua Song, 2017. "A Study on the Conduction Mechanism and Evaluation of the Comprehensive Efficiency of Photovoltaic Power Generation in China," Energies, MDPI, vol. 10(5), pages 1-22, May.
    2. Manuel Angel Gadeo-Martos & Antonio Jesús Yuste-Delgado & Florencia Almonacid Cruz & Jose-Angel Fernandez-Prieto & Joaquin Canada-Bago, 2019. "Modeling a High Concentrator Photovoltaic Module Using Fuzzy Rule-Based Systems," Energies, MDPI, vol. 12(3), pages 1-22, February.
    3. Jesús Polo & Nuria Martín-Chivelet & Carlos Sanz-Saiz, 2022. "BIPV Modeling with Artificial Neural Networks: Towards a BIPV Digital Twin," Energies, MDPI, vol. 15(11), pages 1-11, June.
    4. Chou, Shuo-Yan & Nguyen, Thi Anh Tuyet & Yu, Tiffany Hui-Kuang & Phan, Nguyen Ky Phuc, 2015. "Financial assessment of government subsidy policy on photovoltaic systems for industrial users: A case study in Taiwan," Energy Policy, Elsevier, vol. 87(C), pages 505-516.
    5. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    6. Luigi Rubino & Guido Rubino & Raffaele Esempio, 2023. "Linear Programming-Based Power Management for a Multi-Feeder Ultra-Fast DC Charging Station," Energies, MDPI, vol. 16(3), pages 1-17, January.
    7. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    8. Ruiz-Arias, J.A. & Terrados, J. & Pérez-Higueras, P. & Pozo-Vázquez, D. & Almonacid, G., 2012. "Assessment of the renewable energies potential for intensive electricity production in the province of Jaén, southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2994-3001.
    9. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    10. Mirian Jiménez-Torres & Catalina Rus-Casas & Lenin Guillermo Lemus-Zúiga & Leocadio Hontoria, 2017. "The Importance of Accurate Solar Data for Designing Solar Photovoltaic Systems—Case Studies in Spain," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    11. Almonacid, F. & Fernández, Eduardo F. & Rodrigo, P. & Pérez-Higueras, P.J. & Rus-Casas, C., 2013. "Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network," Energy, Elsevier, vol. 53(C), pages 165-172.
    12. Lazrak, Amine & Boudehenn, François & Bonnot, Sylvain & Fraisse, Gilles & Leconte, Antoine & Papillon, Philippe & Souyri, Bernard, 2016. "Development of a dynamic artificial neural network model of an absorption chiller and its experimental validation," Renewable Energy, Elsevier, vol. 86(C), pages 1009-1022.
    13. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    14. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2013. "Models for the electrical characterization of high concentration photovoltaic cells and modules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 752-760.
    15. Almonacid, F. & Fernández, E.F. & Mallick, T.K. & Pérez-Higueras, P.J., 2015. "High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature," Energy, Elsevier, vol. 84(C), pages 336-343.
    16. Kwak, Younghoon & Mun, Sun-Hye & Park, Chang-Dae & Lee, Sang-Moon & Huh, Jung-Ho, 2022. "Statistical analysis of power generation of semi-transparent photovoltaic (STPV) for diversity in building envelope design: A mock-up test by azimuth and tilt angles," Renewable Energy, Elsevier, vol. 188(C), pages 651-669.
    17. Karabacak, Kerim & Cetin, Numan, 2014. "Artificial neural networks for controlling wind–PV power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 804-827.
    18. Ouammi, Ahmed & Zejli, Driss & Dagdougui, Hanane & Benchrifa, Rachid, 2012. "Artificial neural network analysis of Moroccan solar potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4876-4889.
    19. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    20. Fernández, Eduardo F. & Almonacid, Florencia, 2014. "Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications," Energy, Elsevier, vol. 74(C), pages 941-949.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almonacid, Florencia & Rodrigo, Pedro & Fernández, Eduardo F., 2016. "Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques," Energy, Elsevier, vol. 101(C), pages 146-160.
    2. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    3. Patra, Jagdish C. & Maskell, Douglas L., 2012. "Modeling of multi-junction solar cells for estimation of EQE under influence of charged particles using artificial neural networks," Renewable Energy, Elsevier, vol. 44(C), pages 7-16.
    4. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    5. de Jesus dos Santos Rodrigues, Marinaldo & Torres, Pedro Ferreira & Barros Galhardo, Marcos André & Chase, Otavio Andre & Monteiro, Weslley Leão & de Arimatéia Alves Vieira Filho, José & Mares, Fabríc, 2021. "A new methodology for the assessing of power losses in partially shaded SPV arrays," Energy, Elsevier, vol. 232(C).
    6. Nawal Rai & Amel Abbadi & Fethia Hamidia & Nadia Douifi & Bdereddin Abdul Samad & Khalid Yahya, 2023. "Biogeography-Based Teaching Learning-Based Optimization Algorithm for Identifying One-Diode, Two-Diode and Three-Diode Models of Photovoltaic Cell and Module," Mathematics, MDPI, vol. 11(8), pages 1-30, April.
    7. Ghani, F. & Rosengarten, G. & Duke, M. & Carson, J.K., 2014. "The numerical calculation of single-diode solar-cell modelling parameters," Renewable Energy, Elsevier, vol. 72(C), pages 105-112.
    8. Pareek, Smita & Dahiya, Ratna, 2016. "Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules," Energy, Elsevier, vol. 95(C), pages 561-572.
    9. Georgios Kampitsis & Efstratios Batzelis & Remco van Erp & Elison Matioli, 2021. "Parallel PV Configuration with Magnetic-Free Switched Capacitor Module-Level Converters for Partial Shading Conditions," Energies, MDPI, vol. 14(2), pages 1-17, January.
    10. Piliougine, Michel & Elizondo, David & Mora-López, Llanos & Sidrach-de-Cardona, Mariano, 2013. "Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules," Applied Energy, Elsevier, vol. 112(C), pages 610-617.
    11. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    12. García-Domingo, B. & Piliougine, M. & Elizondo, D. & Aguilera, J., 2015. "CPV module electric characterisation by artificial neural networks," Renewable Energy, Elsevier, vol. 78(C), pages 173-181.
    13. Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
    14. Kesler, Selami & Kivrak, Sinan & Dincer, Furkan & Rustemli, Sabir & Karaaslan, Muharrem & Unal, Emin & Erdiven, Utku, 2014. "The analysis of PV power potential and system installation in Manavgat, Turkey—A case study in winter season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 671-680.
    15. Liu, Liqun & Meng, Xiaoli & Liu, Chunxia, 2016. "A review of maximum power point tracking methods of PV power system at uniform and partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1500-1507.
    16. Karabacak, Kerim & Cetin, Numan, 2014. "Artificial neural networks for controlling wind–PV power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 804-827.
    17. Talavera, D.L. & Muñoz-Rodriguez, F.J. & Jimenez-Castillo, G. & Rus-Casas, C., 2019. "A new approach to sizing the photovoltaic generator in self-consumption systems based on cost–competitiveness, maximizing direct self-consumption," Renewable Energy, Elsevier, vol. 130(C), pages 1021-1035.
    18. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    19. Mohannad Bayoumi, 2020. "Potential of integrating power generation with solar thermal cooling to improve the energy efficiency in a university campus in Saudi Arabia," Energy & Environment, , vol. 31(1), pages 130-154, February.
    20. Yadav, Amit Kumar & Chandel, S.S., 2017. "Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 955-969.

    More about this item

    Keywords

    PV generator; Artificial neural network;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2743-2750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.