IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v74y2021ics0301420721003603.html
   My bibliography  Save this article

The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040

Author

Listed:
  • Tang, Chen
  • Sprecher, Benjamin
  • Tukker, Arnold
  • Mogollón, José M.

Abstract

The Dutch national climate agreement (‘Klimaatakkoord’), stipulates a 49% decrease in greenhouse gas (GHG) emissions by 2030, relative to the 1990 level. To accommodate this target, the passenger vehicles sector must reduce its GHG emissions by 30% in 2030, which likely will come about by replacing internal combustion engine vehicles with electric vehicles. In this study, a dynamic material flow model combined was applied to investigate the future demand for (and metabolism of) lithium, cobalt, and nickel within various scenarios of Dutch electric vehicle markets stemming from climate policy implementation. Our results show that by 2040 the demand for electric vehicles rapidly grows by an order of magnitude, which expands by two orders of magnitude the annual accumulation of these metals in the Netherlands when compared to the 2019 levels. Lithium and nickel demand will keep increasing through 2040, while the demand trend of cobalt will start to drop after 2030, due to changes in battery technology. Increasing the EV driving range and replacing EV batteries during an EV lifetime will increase the demand for these metals by 10%–19%. Conversely, extending the average battery lifetime to meet the vehicle lifetime could reduce the demand of these metals by 30%. Due to the low open-loop recycling of these metals, policies must seek to minimize their presence in the electric mobility sector, while also stimulating better recycling practices and infrastructure.

Suggested Citation

  • Tang, Chen & Sprecher, Benjamin & Tukker, Arnold & Mogollón, José M., 2021. "The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040," Resources Policy, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721003603
    DOI: 10.1016/j.resourpol.2021.102351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721003603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    2. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    3. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    4. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    5. Wangda Li & Evan M. Erickson & Arumugam Manthiram, 2020. "High-nickel layered oxide cathodes for lithium-based automotive batteries," Nature Energy, Nature, vol. 5(1), pages 26-34, January.
    6. Küfeoğlu, Sinan & Khah Kok Hong, Dennis, 2020. "Emissions performance of electric vehicles: A case study from the United Kingdom," Applied Energy, Elsevier, vol. 260(C).
    7. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    8. Huang, Shisheng & Hodge, Bri-Mathias S. & Taheripour, Farzad & Pekny, Joseph F. & Reklaitis, Gintaras V. & Tyner, Wallace E., 2011. "The effects of electricity pricing on PHEV competitiveness," Energy Policy, Elsevier, vol. 39(3), pages 1552-1561, March.
    9. T. E. Graedel & Julian Allwood & Jean‐Pierre Birat & Matthias Buchert & Christian Hagelüken & Barbara K. Reck & Scott F. Sibley & Guido Sonnemann, 2011. "What Do We Know About Metal Recycling Rates?," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 355-366, June.
    10. Richard Schmuch & Ralf Wagner & Gerhard Hörpel & Tobias Placke & Martin Winter, 2018. "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, Nature, vol. 3(4), pages 267-278, April.
    11. Speirs, Jamie & Contestabile, Marcello & Houari, Yassine & Gross, Robert, 2014. "The future of lithium availability for electric vehicle batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 183-193.
    12. Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
    13. Arno Kwade & Wolfgang Haselrieder & Ruben Leithoff & Armin Modlinger & Franz Dietrich & Klaus Droeder, 2018. "Current status and challenges for automotive battery production technologies," Nature Energy, Nature, vol. 3(4), pages 290-300, April.
    14. Di Dong & Arnold Tukker & Ester Van der Voet, 2019. "Modeling copper demand in China up to 2050: A business‐as‐usual scenario based on dynamic stock and flow analysis," Journal of Industrial Ecology, Yale University, vol. 23(6), pages 1363-1380, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiao-Qing & Wu, Tong & Zhong, Huaming & Su, Chi-Wei, 2023. "Bubble behaviors in nickel price: What roles do geopolitical risk and speculation play?," Resources Policy, Elsevier, vol. 83(C).
    2. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    3. Chen, Jinyu & Luo, Qian & Tu, Yan & Ren, Xiaohang & Naderi, Niki, 2023. "Renewable energy transition and metal consumption: Dynamic evolution analysis based on transnational data," Resources Policy, Elsevier, vol. 85(PB).
    4. Huang, Jianbai & Dong, Xuesong & Chen, Jinyu & Zeng, Anqi, 2023. "The slow-release effect of recycling on rapid demand growth of critical metals from EV batteries up to 2050: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    5. Seck, Gondia Sokhna & Hache, Emmanuel & Barnet, Charlène, 2022. "Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world," Resources Policy, Elsevier, vol. 75(C).
    6. Han, Sun & Zhenghao, Meng & Meilin, Li & Xiaohui, Yang & Xiaoxue, Wang, 2023. "Global supply sustainability assessment of critical metals for clean energy technology," Resources Policy, Elsevier, vol. 85(PB).
    7. Gao, Wang & Wei, Jiajia & Zhang, Hongwei & Zhang, Haizhen, 2024. "Does climate policy uncertainty exacerbate extreme risk spillovers between green economy and energy metals?," Resources Policy, Elsevier, vol. 91(C).
    8. Agnese, Pablo & Rios, Francisco, 2024. "Spillover effects of energy transition metals in Chile," Energy Economics, Elsevier, vol. 134(C).
    9. Liu, Meng & Li, Huajiao & Zhou, Jinsheng & Feng, Sida & Wang, Yanli & Wang, Xingxing, 2022. "Analysis of material flow among multiple phases of cobalt industrial chain based on a complex network," Resources Policy, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seck, Gondia Sokhna & Hache, Emmanuel & Barnet, Charlène, 2022. "Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world," Resources Policy, Elsevier, vol. 75(C).
    2. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    3. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    4. Zhu-Jun Wang & Zhen-Song Chen & Qin Su & Kwai-Sang Chin & Witold Pedrycz & Mirosław J. Skibniewski, 2024. "Enhancing the sustainability and robustness of critical material supply in electrical vehicle market: an AI-powered supplier selection approach," Annals of Operations Research, Springer, vol. 342(1), pages 921-958, November.
    5. María Fernanda Godoy León & Cristina T. Matos & Konstantinos Georgitzikis & Fabrice Mathieux & Jo Dewulf, 2022. "Material system analysis: Functional and nonfunctional cobalt in the EU, 2012–2016," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1277-1293, August.
    6. Benjamin Jones & Viet Nguyen-Tien & Robert J R Elliott, 2021. "The EV Revolution: Critical Material Supply Chains, Trade, and Development," Discussion Papers 21-15, Department of Economics, University of Birmingham.
    7. Plunkett, Samuel T. & Chen, Chengxiu & Rojaee, Ramin & Doherty, Patrick & Sik Oh, Yun & Galazutdinova, Yana & Krishnamurthy, Mahesh & Al-Hallaj, Said, 2021. "Enhancing thermal safety in lithium-ion battery packs through parallel cell ‘current dumping’ mitigation," Applied Energy, Elsevier, vol. 286(C).
    8. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    9. Held, Marcel & Tuchschmid, Martin & Zennegg, Markus & Figi, Renato & Schreiner, Claudia & Mellert, Lars Derek & Welte, Urs & Kompatscher, Michael & Hermann, Michael & Nachef, Léa, 2022. "Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Becker, Jonathon M., 2021. "General equilibrium impacts on the U.S. economy of a disruption to Chinese cobalt supply," Resources Policy, Elsevier, vol. 71(C).
    11. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    13. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    14. Arjun K. Thapa & Abhinav C. Nouduri & Mohammed Mohiuddin & Hari Prasad Reddy Kannapu & Lihui Bai & Hui Wang & Mahendra K. Sunkara, 2024. "Recycling and Reuse of Mn-Based Spinel Electrode from Spent Lithium-Ion Batteries," Energies, MDPI, vol. 17(16), pages 1-13, August.
    15. Nguyen-Tien, Viet & Dai, Qiang & Harper, Gavin D.J. & Anderson, Paul A. & Elliott, Robert J.R., 2022. "Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy," Applied Energy, Elsevier, vol. 321(C).
    16. Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
    17. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.
    18. Berzi, Lorenzo & Delogu, Massimo & Pierini, Marco & Romoli, Filippo, 2016. "Evaluation of the end-of-life performance of a hybrid scooter with the application of recyclability and recoverability assessment methods," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 140-155.
    19. Jordan, Brett, 2018. "Economics literature on joint production of minerals: A survey," Resources Policy, Elsevier, vol. 55(C), pages 20-28.
    20. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721003603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.