IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45373-1.html
   My bibliography  Save this article

Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes

Author

Listed:
  • Ziyao Gao

    (Tsinghua University
    Tsinghua University)

  • Chenglong Zhao

    (Tsinghua University)

  • Kai Zhou

    (Tsinghua University
    Tsinghua University)

  • Junru Wu

    (Tsinghua University
    Tsinghua University)

  • Yao Tian

    (Tsinghua University)

  • Xianming Deng

    (Tsinghua University
    Tsinghua University)

  • Lihan Zhang

    (Tsinghua University
    Tsinghua University)

  • Kui Lin

    (Tsinghua University
    Tsinghua University)

  • Feiyu Kang

    (Tsinghua University)

  • Lele Peng

    (Tsinghua University)

  • Marnix Wagemaker

    (Delft University of Technology)

  • Baohua Li

    (Tsinghua University)

Abstract

Nickel-rich layered oxide cathodes promise ultrahigh energy density but is plagued by the mechanical failure of the secondary particle upon (de)lithiation. Existing approaches for alleviating the structural degradation could retard pulverization, yet fail to tune the stress distribution and root out the formation of cracks. Herein, we report a unique strategy to uniformize the stress distribution in secondary particle via Kirkendall effect to stabilize the core region during electrochemical cycling. Exotic metal/metalloid oxides (such as Al2O3 or SiO2) is introduced as the heterogeneous nucleation seeds for the preferential growth of the precursor. The calcination treatment afterwards generates a dopant-rich interior structure with central Kirkendall void, due to the different diffusivity between the exotic element and nickel atom. The resulting cathode material exhibits superior structural and electrochemical reversibility, thus contributing to a high specific energy density (based on cathode) of 660 Wh kg−1 after 500 cycles with a retention rate of 86%. This study suggests that uniformizing stress distribution represents a promising pathway to tackle the structural instability facing nickel-rich layered oxide cathodes.

Suggested Citation

  • Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45373-1
    DOI: 10.1038/s41467-024-45373-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45373-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45373-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lianfeng Zou & Jianyu Li & Zhenyu Liu & Guofeng Wang & Arumugam Manthiram & Chongmin Wang, 2019. "Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Shuaifeng Lou & Qianwen Liu & Fang Zhang & Qingsong Liu & Zhenjiang Yu & Tiansheng Mu & Yang Zhao & James Borovilas & Yijun Chen & Mingyuan Ge & Xianghui Xiao & Wah-Keat Lee & Geping Yin & Yuan Yang &, 2020. "Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Tongchao Liu & Lei Yu & Jun Lu & Tao Zhou & Xiaojing Huang & Zhonghou Cai & Alvin Dai & Jihyeon Gim & Yang Ren & Xianghui Xiao & Martin V. Holt & Yong S. Chu & Ilke Arslan & Jianguo Wen & Khalil Amine, 2021. "Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Wangda Li & Evan M. Erickson & Arumugam Manthiram, 2020. "High-nickel layered oxide cathodes for lithium-based automotive batteries," Nature Energy, Nature, vol. 5(1), pages 26-34, January.
    5. He Tianou & Weicong Wang & Xiaolong Yang & Zhenming Cao & Qin Kuang & Zhao Wang & Zhiwei Shan & Mingshang Jin & Yadong Yin, 2017. "Inflating hollow nanocrystals through a repeated Kirkendall cavitation process," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    6. Rui Zhang & Chunyang Wang & Peichao Zou & Ruoqian Lin & Lu Ma & Liang Yin & Tianyi Li & Wenqian Xu & Hao Jia & Qiuyan Li & Sami Sainio & Kim Kisslinger & Stephen E. Trask & Steven N. Ehrlich & Yang Ya, 2022. "Compositionally complex doping for zero-strain zero-cobalt layered cathodes," Nature, Nature, vol. 610(7930), pages 67-73, October.
    7. Gaurav Assat & Jean-Marie Tarascon, 2018. "Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries," Nature Energy, Nature, vol. 3(5), pages 373-386, May.
    8. Zhengrui Xu & Zhisen Jiang & Chunguang Kuai & Rong Xu & Changdong Qin & Yan Zhang & Muhammad Mominur Rahman & Chenxi Wei & Dennis Nordlund & Cheng-Jun Sun & Xianghui Xiao & Xi-Wen Du & Kejie Zhao & Pe, 2020. "Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    9. Sha Tan & Zulipiya Shadike & Jizhou Li & Xuelong Wang & Yang Yang & Ruoqian Lin & Arthur Cresce & Jiangtao Hu & Adrian Hunt & Iradwikanari Waluyo & Lu Ma & Federico Monaco & Peter Cloetens & Jie Xiao , 2022. "Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V," Nature Energy, Nature, vol. 7(6), pages 484-494, June.
    10. Shaofeng Li & Zhisen Jiang & Jiaxiu Han & Zhengrui Xu & Chenxu Wang & Hai Huang & Chang Yu & Sang-Jun Lee & Piero Pianetta & Hendrik Ohldag & Jieshan Qiu & Jun-Sik Lee & Feng Lin & Kejie Zhao & Yijin , 2020. "Mutual modulation between surface chemistry and bulk microstructure within secondary particles of nickel-rich layered oxides," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siyang Xing & Ningning Liu & Qiang Li & Mingxing Liang & Xinru Liu & Haijiao Xie & Fei Yu & Jie Ma, 2024. "Reactive P and S co-doped porous hollow nanotube arrays for high performance chloride ion storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanwen An & Menglu Li & Qingsong Liu & Yajie Song & Jiaxuan Liu & Zhihang Yu & Xingjiang Liu & Biao Deng & Jiajun Wang, 2024. "Strong Lewis-acid coordinated PEO electrolyte achieves 4.8 V-class all-solid-state batteries over 580 Wh kg−1," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Zhichen Xue & Nikhil Sharma & Feixiang Wu & Piero Pianetta & Feng Lin & Luxi Li & Kejie Zhao & Yijin Liu, 2023. "Asynchronous domain dynamics and equilibration in layered oxide battery cathode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Dong Hou & Zhengrui Xu & Zhijie Yang & Chunguang Kuai & Zhijia Du & Cheng-Jun Sun & Yang Ren & Jue Liu & Xianghui Xiao & Feng Lin, 2022. "Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yi Pei & Qing Chen & Meiyu Wang & Pengjun Zhang & Qingyong Ren & Jingkai Qin & Penghao Xiao & Li Song & Yu Chen & Wen Yin & Xin Tong & Liang Zhen & Peng Wang & Cheng-Yan Xu, 2022. "A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Zhongsheng Dai & Zhujie Li & Renjie Chen & Feng Wu & Li Li, 2023. "Defective oxygen inert phase stabilized high-voltage nickel-rich cathode for high-energy lithium-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Shaofeng Li & Guannan Qian & Xiaomei He & Xiaojing Huang & Sang-Jun Lee & Zhisen Jiang & Yang Yang & Wei-Na Wang & Dechao Meng & Chang Yu & Jun-Sik Lee & Yong S. Chu & Zi-Feng Ma & Piero Pianetta & Ji, 2022. "Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Isaac Martens & Nikita Vostrov & Marta Mirolo & Steven J. Leake & Edoardo Zatterin & Xiaobo Zhu & Lianzhou Wang & Jakub Drnec & Marie-Ingrid Richard & Tobias U. Schulli, 2023. "Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Muhammad Mominur Rahman & Sha Tan & Yang Yang & Hui Zhong & Sanjit Ghose & Iradwikanari Waluyo & Adrian Hunt & Lu Ma & Xiao-Qing Yang & Enyuan Hu, 2023. "An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Held, Marcel & Tuchschmid, Martin & Zennegg, Markus & Figi, Renato & Schreiner, Claudia & Mellert, Lars Derek & Welte, Urs & Kompatscher, Michael & Hermann, Michael & Nachef, Léa, 2022. "Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Xiyang Wang & Qilei Yang & Xinbo Li & Zhen Li & Chuan Gao & Hui Zhang & Xuefeng Chu & Carl Redshaw & Shucheng Shi & Yimin A. Wu & Yongliang Ma & Yue Peng & Junhua Li & Shouhua Feng, 2024. "Exploring the dynamic evolution of lattice oxygen on exsolved-Mn2O3@SmMn2O5 interfaces for NO Oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    12. Xuelong Wang & Liang Yin & Arthur Ronne & Yiman Zhang & Zilin Hu & Sha Tan & Qinchao Wang & Bohang Song & Mengya Li & Xiaohui Rong & Saul Lapidus & Shize Yang & Enyuan Hu & Jue Liu, 2023. "Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Qingyuan Li & Jen-Hung Fang & Wenyuan Li & Xingbo Liu, 2022. "Novel Materials and Advanced Characterization for Energy Storage and Conversion," Energies, MDPI, vol. 15(20), pages 1-3, October.
    14. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Fang Fu & Xiang Liu & Xiaoguang Fu & Hongwei Chen & Ling Huang & Jingjing Fan & Jiabo Le & Qiuxiang Wang & Weihua Yang & Yang Ren & Khalil Amine & Shi-Gang Sun & Gui-Liang Xu, 2022. "Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Qingyuan Li & De Ning & Deniz Wong & Ke An & Yuxin Tang & Dong Zhou & Götz Schuck & Zhenhua Chen & Nian Zhang & Xiangfeng Liu, 2022. "Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).
    19. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Gogwon Choe & Hyungsub Kim & Jaesub Kwon & Woochul Jung & Kyu-Young Park & Yong-Tae Kim, 2024. "Re-evaluation of battery-grade lithium purity toward sustainable batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45373-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.