IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v144y2020ics0301421520303852.html
   My bibliography  Save this article

Transition to electric vehicles in China: Implications for private motorization rate and battery market

Author

Listed:
  • Hsieh, I-Yun Lisa
  • Pan, Menghsuan Sam
  • Green, William H.

Abstract

China has recently enacted the dual-credit mandate to replace the existing subsidies as a continued effort to electrify its ground transportation sector. This study quantifies the impacts of such policy transition on private motorization rate and battery market. Throughout the next decade, affordability remains the determinant for vehicle purchases; forcing broader adoption of pricier battery-powered cars without subsidies will inevitably diminish the market growth. Under the mandate, China's electric vehicle sales will continue to grow through 2030 despite the temporary car market contraction. Cumulative private electric vehicle sales are projected to reach 66 million by 2030 (with 37% sales market share); this will drive the battery demand from China's private car sector to expand rapidly and accumulate ~420 GWh (2 million tonnes) of spent lithium-ion batteries. This significant increase in battery demand will exacerbate pressure on the global supply for lithium and cobalt. The cobalt demand from China's private vehicle sector in 2030 alone would be almost half of the total global cobalt production in 2017; up to 16% of this 2030 demand could be satisfied by battery recycling. A recycling-based battery supply chain is needed to alleviate the concerns of supply shortages and to achieve a circular economy.

Suggested Citation

  • Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Green, William H., 2020. "Transition to electric vehicles in China: Implications for private motorization rate and battery market," Energy Policy, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:enepol:v:144:y:2020:i:c:s0301421520303852
    DOI: 10.1016/j.enpol.2020.111654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520303852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
    2. Xinyu Liang & Shaojun Zhang & Ye Wu & Jia Xing & Xiaoyi He & K. Max Zhang & Shuxiao Wang & Jiming Hao, 2019. "Air quality and health benefits from fleet electrification in China," Nature Sustainability, Nature, vol. 2(10), pages 962-971, October.
    3. Richard Schmuch & Ralf Wagner & Gerhard Hörpel & Tobias Placke & Martin Winter, 2018. "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, Nature, vol. 3(4), pages 267-278, April.
    4. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Chiang, Yet-Ming & Green, William H., 2019. "Learning only buys you so much: Practical limits on battery price reduction," Applied Energy, Elsevier, vol. 239(C), pages 218-224.
    5. Kushnir, Duncan & Sandén, Björn A., 2012. "The time dimension and lithium resource constraints for electric vehicles," Resources Policy, Elsevier, vol. 37(1), pages 93-103.
    6. Zhang, Xingping & Liang, Yanni & Yu, Enhai & Rao, Rao & Xie, Jian, 2017. "Review of electric vehicle policies in China: Content summary and effect analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 698-714.
    7. Zhang, Da & Rausch, Sebastian & Karplus, Valerie J. & Zhang, Xiliang, 2013. "Quantifying regional economic impacts of CO2 intensity targets in China," Energy Economics, Elsevier, vol. 40(C), pages 687-701.
    8. Ou, Shiqi & Lin, Zhenhong & Qi, Liang & Li, Jie & He, Xin & Przesmitzki, Steven, 2018. "The dual-credit policy: Quantifying the policy impact on plug-in electric vehicle sales and industry profits in China," Energy Policy, Elsevier, vol. 121(C), pages 597-610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose Ángel Gumiel & Jon Mabe & Jaime Jiménez & Jon Barruetabeña, 2022. "Introducing the Electronic Knowledge Framework into the Traditional Automotive Suppliers’ Industry: From Mechanical Engineering to Mechatronics," Businesses, MDPI, vol. 2(2), pages 1-17, June.
    2. Menglin Zhan & Yan Chen, 2022. "Vehicle Company’s Decision-Making to Process Waste Batteries: A Game Research under the Influence of Different Government Subsidy Strategies," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    3. Zhao, Xingrong & Shao, Shuai & Ma, Ye & Ma, Tieju, 2023. "Who Embraces shared mobility and why? A survey in Beijing and Shanghai, China," Energy, Elsevier, vol. 283(C).
    4. Ma, Haicheng & Lou, Gaoxiang & Fan, Tijun & Chan, Hing Kai & Chung, Sai Ho, 2021. "Conventional automotive supply chains under China's dual-credit policy: fuel economy, production and coordination," Energy Policy, Elsevier, vol. 151(C).
    5. Li, Xiangyang & Song, Yuanyuan, 2024. "Industrial ripples: Automotive electrification sends through carbon emissions," Energy Policy, Elsevier, vol. 187(C).
    6. Yu, Hui & Li, Ying & Wang, Wei, 2023. "Optimal innovation strategies of automakers with market competition under the dual-credit policy," Energy, Elsevier, vol. 283(C).
    7. Bertha Maya Sopha & Dwi Megah Purnamasari & Sholeh Ma’mun, 2022. "Barriers and Enablers of Circular Economy Implementation for Electric-Vehicle Batteries: From Systematic Literature Review to Conceptual Framework," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    8. Liukai Yu & Xuehai Jiang & Yujie He & Yangyang Jiao, 2022. "Promoting the Diffusion of New Energy Vehicles under Dual Credit Policy: Asymmetric Competition and Cooperation in Complex Network," Energies, MDPI, vol. 15(15), pages 1-20, July.
    9. Pan, An & Zhang, Wenna & Shi, Xunpeng & Dai, Ling, 2022. "Climate policy and low-carbon innovation: Evidence from low-carbon city pilots in China," Energy Economics, Elsevier, vol. 112(C).
    10. Nguyen-Phuoc, Duy Quy & Nguyen, Nguyen An Ngoc & Tran, Phuong Thi Kim & Pham, Huong-Giang & Oviedo-Trespalacios, Oscar, 2023. "The influence of environmental concerns and psychosocial factors on electric motorbike switching intention in the global south," Journal of Transport Geography, Elsevier, vol. 113(C).
    11. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    12. Seck, Gondia Sokhna & Hache, Emmanuel & Barnet, Charlène, 2022. "Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world," Resources Policy, Elsevier, vol. 75(C).
    13. Liu, Wei & Li, Xin & Liu, Chunyan & Wang, Minxi & Liu, Litao, 2023. "Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks," Resources Policy, Elsevier, vol. 80(C).
    14. Han, Jing & Guo, Ju-E & Cai, Xun & Lv, Cheng & Lev, Benjamin, 2022. "An analysis on strategy evolution of research & development in cooperative innovation network of new energy vehicle within policy transition period," Omega, Elsevier, vol. 112(C).
    15. Qi Wu & Shouheng Sun, 2022. "Energy and Environmental Impact of the Promotion of Battery Electric Vehicles in the Context of Banning Gasoline Vehicle Sales," Energies, MDPI, vol. 15(22), pages 1-18, November.
    16. Dong-Xiao Yang & Lei Yang & Xiao-Ling Chen & Chan Wang & Pu-Yan Nie, 2023. "Research on credit pricing mechanism in dual-credit policy: is the government in charge or is the market in charge?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1561-1581, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    2. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Chiang, Yet-Ming & Green, William H., 2019. "Learning only buys you so much: Practical limits on battery price reduction," Applied Energy, Elsevier, vol. 239(C), pages 218-224.
    3. Wen, W. & Yang, S. & Zhou, P. & Gao, S.Z., 2021. "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    5. Mengnan Li & Haiyi Ye & Xiawei Liao & Junping Ji & Xiaoming Ma, 2020. "How Shenzhen, China pioneered the widespread adoption of electric vehicles in a major city: Implications for global implementation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(4), July.
    6. Lopez, Neil Stephen & Tria, Lew Andrew & Tayo, Leo Allen & Cruzate, Rovinna Janel & Oppus, Carlos & Cabacungan, Paul & Isla, Igmedio & Ansay, Arjun & Garcia, Teodinis & Cabarrubias-Dela Cruz, Kevien &, 2021. "Societal cost-benefit analysis of electric vehicles in the Philippines with the inclusion of impacts to balance of payments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Duffner, F. & Wentker, M. & Greenwood, M. & Leker, J., 2020. "Battery cost modeling: A review and directions for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Wu, Yang Andrew & Ng, Artie W. & Yu, Zichao & Huang, Jie & Meng, Ke & Dong, Z.Y., 2021. "A review of evolutionary policy incentives for sustainable development of electric vehicles in China: Strategic implications," Energy Policy, Elsevier, vol. 148(PB).
    9. Han, Jing & Guo, Ju-E & Cai, Xun & Lv, Cheng & Lev, Benjamin, 2022. "An analysis on strategy evolution of research & development in cooperative innovation network of new energy vehicle within policy transition period," Omega, Elsevier, vol. 112(C).
    10. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    11. Harvey, L.D. Danny, 2018. "Resource implications of alternative strategies for achieving zero greenhouse gas emissions from light-duty vehicles by 2060," Applied Energy, Elsevier, vol. 212(C), pages 663-679.
    12. Zheng, Xuemei & Menezes, Flavio & Zheng, Xiaofeng & Wu, Chengkuan, 2022. "An empirical assessment of the impact of subsidies on EV adoption in China: A difference-in-differences approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 121-136.
    13. Marcin Połom, 2021. "Technology Development and Spatial Diffusion of Auxiliary Power Sources in Trolleybuses in European Countries," Energies, MDPI, vol. 14(11), pages 1-18, May.
    14. Mauler, Lukas & Duffner, Fabian & Leker, Jens, 2021. "Economies of scale in battery cell manufacturing: The impact of material and process innovations," Applied Energy, Elsevier, vol. 286(C).
    15. Steffen Link & Annegret Stephan & Daniel Speth & Patrick Plötz, 2024. "Rapidly declining costs of truck batteries and fuel cells enable large-scale road freight electrification," Nature Energy, Nature, vol. 9(8), pages 1032-1039, August.
    16. Christian Thies & Christoph Hüls & Karsten Kieckhäfer & Jörg Wansart & Thomas S. Spengler, 2022. "Project portfolio planning under CO2 fleet emission restrictions in the automotive industry," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 937-951, June.
    17. Xaviery N. Penisa & Michael T. Castro & Jethro Daniel A. Pascasio & Eugene A. Esparcia & Oliver Schmidt & Joey D. Ocon, 2020. "Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model," Energies, MDPI, vol. 13(20), pages 1-18, October.
    18. Piotr Wróblewski & Wojciech Lewicki, 2021. "A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters," Energies, MDPI, vol. 14(21), pages 1-24, October.
    19. Ghulam E Mustafa Abro & Saiful Azrin B. M. Zulkifli & Kundan Kumar & Najib El Ouanjli & Vijanth Sagayan Asirvadam & Mahmoud A. Mossa, 2023. "Comprehensive Review of Recent Advancements in Battery Technology, Propulsion, Power Interfaces, and Vehicle Network Systems for Intelligent Autonomous and Connected Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-31, March.
    20. Hamid M. Pouran & Seyed M. Karimi & Mariana Padilha Campos Lopes & Yong Sheng, 2022. "What China’s Environmental Policy Means for PV Solar, Electric Vehicles, and Carbon Capture and Storage Technologies," Energies, MDPI, vol. 15(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:144:y:2020:i:c:s0301421520303852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.