IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v162y2022ics1364032122003574.html
   My bibliography  Save this article

Towards underground hydrogen storage: A review of barriers

Author

Listed:
  • Tarkowski, R.
  • Uliasz-Misiak, B.

Abstract

The presented issues concern the analysis of barriers limiting large-scale underground hydrogen storage. Prospects for the rapid development of the hydrogen economy, the role of hydrogen in a carbon-neutral economy, and the production, use, and demand for hydrogen today and in the perspective of 2050 are indicated. The decreasing costs of producing ‘green’ hydrogen, rising prices of CO2 emission allowances, and the development of carbon capture and storage technology will have a significant impact on the rapid deployment of underground hydrogen storage (UHS). Underground storage of large quantities of hydrogen from surplus renewable energy production is of interest to government institutions interested in the construction of hydrogen storage sites, geological services, large renewable energy sources electricity producers, and chemical and petrochemical plants. It offers the possibility of long-term, safe storage of this gas at relatively low costs.

Suggested Citation

  • Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003574
    DOI: 10.1016/j.rser.2022.112451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122003574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sherry-Brennan, Fionnguala & Devine-Wright, Hannah & Devine-Wright, Patrick, 2010. "Public understanding of hydrogen energy: A theoretical approach," Energy Policy, Elsevier, vol. 38(10), pages 5311-5319, October.
    2. Aleksandra Koteras & Jarosław Chećko & Tomasz Urych & Małgorzata Magdziarczyk & Adam Smolinski, 2020. "An Assessment of the Formations and Structures Suitable for Safe CO 2 Geological Storage in the Upper Silesia Coal Basin in Poland in the Context of the Regulation Relating to the CCS," Energies, MDPI, vol. 13(1), pages 1-15, January.
    3. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    4. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).
    5. Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Tagliapietra, Simone & Zachmann, Georg & Edenhofer, Ottmar & Glachant, Jean-Michel & Linares, Pedro & Loeschel, Andreas, 2019. "The European union energy transition: Key priorities for the next five years," Energy Policy, Elsevier, vol. 132(C), pages 950-954.
    7. Clarke, Christopher E. & Bugden, Dylan & Hart, P. Sol & Stedman, Richard C. & Jacquet, Jeffrey B. & Evensen, Darrick T.N. & Boudet, Hilary S., 2016. "How geographic distance and political ideology interact to influence public perception of unconventional oil/natural gas development," Energy Policy, Elsevier, vol. 97(C), pages 301-309.
    8. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    9. Menéndez, Javier & Ordóñez, Almudena & Álvarez, Rodrigo & Loredo, Jorge, 2019. "Energy from closed mines: Underground energy storage and geothermal applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 498-512.
    10. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. N. Kampman & A. Busch & P. Bertier & J. Snippe & S. Hangx & V. Pipich & Z. Di & G. Rother & J. F. Harrington & J. P. Evans & A. Maskell & H. J. Chapman & M. J. Bickle, 2016. "Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    12. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    13. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    14. Davide Astiaso Garcia & Federica Barbanera & Fabrizio Cumo & Umberto Di Matteo & Benedetto Nastasi, 2016. "Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe," Energies, MDPI, vol. 9(11), pages 1-22, November.
    15. Witkowski, Andrzej & Rusin, Andrzej & Majkut, Mirosław & Stolecka, Katarzyna, 2017. "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects," Energy, Elsevier, vol. 141(C), pages 2508-2518.
    16. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    17. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    18. Mouli-Castillo, Julien & Heinemann, Niklas & Edlmann, Katriona, 2021. "Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study," Applied Energy, Elsevier, vol. 283(C).
    19. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    20. L׳Orange Seigo, Selma & Dohle, Simone & Siegrist, Michael, 2014. "Public perception of carbon capture and storage (CCS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 848-863.
    21. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    22. Hache, Emmanuel & Palle, Angélique, 2019. "Renewable energy source integration into power networks, research trends and policy implications: A bibliometric and research actors survey analysis," Energy Policy, Elsevier, vol. 124(C), pages 23-35.
    23. Timmerberg, Sebastian & Kaltschmitt, Martin, 2019. "Hydrogen from renewables: Supply from North Africa to Central Europe as blend in existing pipelines – Potentials and costs," Applied Energy, Elsevier, vol. 237(C), pages 795-809.
    24. Hanley, Emma S. & Deane, JP & Gallachóir, BP Ó, 2018. "The role of hydrogen in low carbon energy futures–A review of existing perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3027-3045.
    25. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    26. Alexandra Kopteva & Leonid Kalimullin & Pavel Tcvetkov & Amilcar Soares, 2021. "Prospects and Obstacles for Green Hydrogen Production in Russia," Energies, MDPI, vol. 14(3), pages 1-21, January.
    27. Dominković, D.F. & Bačeković, I. & Pedersen, A.S. & Krajačić, G., 2018. "The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1823-1838.
    28. Henok Ayele Behabtu & Maarten Messagie & Thierry Coosemans & Maitane Berecibar & Kinde Anlay Fante & Abraham Alem Kebede & Joeri Van Mierlo, 2020. "A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    29. Sonja Renssen, 2020. "The hydrogen solution?," Nature Climate Change, Nature, vol. 10(9), pages 799-801, September.
    30. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    31. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    32. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    33. Ma, Jianli & Li, Qi & Kühn, Michael & Nakaten, Natalie, 2018. "Power-to-gas based subsurface energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 478-496.
    34. Feng, Tian-tian & Gong, Xiao-lei & Guo, Yu-hua & Yang, Yi-sheng & Dong, Jun, 2019. "Regulatory mechanism design of GHG emissions in the electric power industry in China," Energy Policy, Elsevier, vol. 131(C), pages 187-201.
    35. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chai, Maojie & Chen, Zhangxin & Nourozieh, Hossein & Yang, Min, 2023. "Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection," Applied Energy, Elsevier, vol. 334(C).
    2. Omid Ahmad Mahmoudi Zamani & Dariusz Knez, 2024. "Well Integrity in Salt Cavern Hydrogen Storage," Energies, MDPI, vol. 17(14), pages 1-22, July.
    3. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła, 2024. "Hydrogen Storage Potential in Natural Gas Deposits in the Polish Lowlands," Energies, MDPI, vol. 17(2), pages 1-18, January.
    4. Katarzyna Luboń & Radosław Tarkowski & Barbara Uliasz-Misiak, 2024. "Impact of Depth on Underground Hydrogen Storage Operations in Deep Aquifers," Energies, MDPI, vol. 17(6), pages 1-14, March.
    5. Inês Rolo & Vítor A. F. Costa & Francisco P. Brito, 2023. "Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges," Energies, MDPI, vol. 17(1), pages 1-74, December.
    6. Lu Wang & Zhijun Jin & Xiaowei Huang & Runchao Liu & Yutong Su & Qian Zhang, 2024. "Hydrogen Adsorption in Porous Geological Materials: A Review," Sustainability, MDPI, vol. 16(5), pages 1-21, February.
    7. Azadnia, Amir Hossein & McDaid, Conor & Andwari, Amin Mahmoudzadeh & Hosseini, Seyed Ehsan, 2023. "Green hydrogen supply chain risk analysis: A european hard-to-abate sectors perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Huaguang Yan & Wenda Zhang & Jiandong Kang & Tiejiang Yuan, 2023. "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China," Energies, MDPI, vol. 16(13), pages 1-21, June.
    9. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    10. Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    12. Praveen Cheekatamarla, 2024. "Hydrogen and the Global Energy Transition—Path to Sustainability and Adoption across All Economic Sectors," Energies, MDPI, vol. 17(4), pages 1-21, February.
    13. Zhu, Mengshu & Ai, Xiaomeng & Fang, Jiakun & Cui, Shichang & Wu, Kejing & Zheng, Lufan & Wen, Jinyu, 2024. "Optimal scheduling of hydrogen energy hub for stable demand with uncertain photovoltaic and biomass," Applied Energy, Elsevier, vol. 360(C).
    14. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    15. Konstantin Gomonov & Marina Reshetnikova & Svetlana Ratner, 2023. "Economic Analysis of Recently Announced Green Hydrogen Projects in Russia: A Multiple Case Study," Energies, MDPI, vol. 16(10), pages 1-15, May.
    16. Barbara Uliasz-Misiak & Jacek Misiak & Joanna Lewandowska-Śmierzchalska, 2024. "Hydrogen Storage in Porous Rocks: A Bibliometric Analysis of Research Trends," Energies, MDPI, vol. 17(4), pages 1-15, February.
    17. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    18. Katarzyna Luboń & Radosław Tarkowski, 2024. "Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage," Energies, MDPI, vol. 17(6), pages 1-17, March.
    19. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    20. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    3. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    4. Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    7. Jeanmonod, Guillaume & Wang, Ligang & Diethelm, Stefan & Maréchal, François & Van herle, Jan, 2019. "Trade-off designs of power-to-methane systems via solid-oxide electrolyzer and the application to biogas upgrading," Applied Energy, Elsevier, vol. 247(C), pages 572-581.
    8. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    9. Jahanbani Veshareh, Moein & Thaysen, Eike Marie & Nick, Hamidreza M., 2022. "Feasibility of hydrogen storage in depleted hydrocarbon chalk reservoirs: Assessment of biochemical and chemical effects," Applied Energy, Elsevier, vol. 323(C).
    10. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    14. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    15. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    16. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    18. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    19. Asna Ashari, Parsa & Blind, Knut & Koch, Claudia, 2023. "Knowledge and technology transfer via publications, patents, standards: Exploring the hydrogen technological innovation system," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    20. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.