IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v182y2023ics1364032123002289.html
   My bibliography  Save this article

Green hydrogen supply chain risk analysis: A european hard-to-abate sectors perspective

Author

Listed:
  • Azadnia, Amir Hossein
  • McDaid, Conor
  • Andwari, Amin Mahmoudzadeh
  • Hosseini, Seyed Ehsan

Abstract

Green hydrogen is a tentative solution for the decarbonisation of hard-to-abate sectors such as steel, chemical, cement, and refinery industries. Green hydrogen is a form of hydrogen gas that is produced using renewable energy sources, such as wind or solar power, through a process called electrolysis. The green hydrogen supply chain includes several interconnected entities such as renewable energy providers, electrolysers, distribution facilities, and consumers. Although there have been many studies about green hydrogen, little attention has been devoted to green hydrogen supply chain risk identification and analysis, especially for hard-to-abate sectors in Europe. This research contributes to existing knowledge by identifying and analysing the European region's green hydrogen supply chain risk factors. Using a Delphi method 7 categories and 43 risk factors are identified based on the green hydrogen supply chain experts' opinions. The best-worst method is utilised to determine the importance weights of the risk categories and risk factors. High investment of capital for hydrogen production and delivery technology was the highest-ranked risk factor followed by the lack of enough capacity for electrolyser, and policy & regulation development. Several mitigation strategies and policy recommendations are proposed for high-importance risk factors. This study provides novelty in the form of an integrated approach resulting in a scientific ranking of the risk factors for the green hydrogen supply chain. The results of this study provide empirical evidence which corroborates with previous studies that European countries should endeavour to create comprehensive and supportive standards and regulations for green hydrogen supply chain implementation.

Suggested Citation

  • Azadnia, Amir Hossein & McDaid, Conor & Andwari, Amin Mahmoudzadeh & Hosseini, Seyed Ehsan, 2023. "Green hydrogen supply chain risk analysis: A european hard-to-abate sectors perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002289
    DOI: 10.1016/j.rser.2023.113371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123002289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wee, Hui-Ming & Yang, Wen-Hsiung & Chou, Chao-Wu & Padilan, Marivic V., 2012. "Renewable energy supply chains, performance, application barriers, and strategies for further development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5451-5465.
    2. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Rossana Scita & Pier Paolo Raimondi & Michel Noussan, 2020. "Green Hydrogen: the Holy Grail of Decarbonisation? An Analysis of the Technical and Geopolitical Implications of the Future Hydrogen Economy," Working Papers 2020.13, Fondazione Eni Enrico Mattei.
    4. Faissal Jelti & Amine Allouhi & Mahmut Sami Büker & Rachid Saadani & Abdelmajid Jamil, 2021. "Renewable Power Generation: A Supply Chain Perspective," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    5. Cha, Junyoung & Park, Yongha & Brigljević, Boris & Lee, Boreum & Lim, Dongjun & Lee, Taeho & Jeong, Hyangsoo & Kim, Yongmin & Sohn, Hyuntae & Mikulčić, Hrvoje & Lee, Kyung Moon & Nam, Dong Hoon & Lee,, 2021. "An efficient process for sustainable and scalable hydrogen production from green ammonia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Scita, Rossana & Raimondi, Pier Paolo & Noussan, Michel, 2020. "Green Hydrogen: the Holy Grail of Decarbonisation? An Analysis of the Technical and Geopolitical Implications of the Future Hydrogen Economy," FEP: Future Energy Program 305824, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    7. Djalma Araújo Rangel & Taiane Kamel de Oliveira & Maria Silene Alexandre Leite, 2015. "Supply chain risk classification: discussion and proposal," International Journal of Production Research, Taylor & Francis Journals, vol. 53(22), pages 6868-6887, November.
    8. Ghadimi, Pezhman & Donnelly, Oisin & Sar, Kubra & Wang, Chao & Azadnia, Amir Hossein, 2022. "The successful implementation of industry 4.0 in manufacturing: An analysis and prioritization of risks in Irish industry," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    9. David Jure Jovan & Gregor Dolanc, 2020. "Can Green Hydrogen Production Be Economically Viable under Current Market Conditions," Energies, MDPI, vol. 13(24), pages 1-16, December.
    10. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Kim, Chul, 2021. "A review of the deployment programs, impact, and barriers of renewable energy policies in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.
    13. Solangi, Yasir Ahmed & Longsheng, Cheng & Shah, Syed Ahsan Ali, 2021. "Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan: An integrated AHP and fuzzy TOPSIS approach," Renewable Energy, Elsevier, vol. 173(C), pages 209-222.
    14. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    15. Velazquez Abad, Anthony & Dodds, Paul E., 2020. "Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges," Energy Policy, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Jesús Rey & Francisca Segura & José Manuel Andújar, 2023. "Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework," Energies, MDPI, vol. 16(17), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    2. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    3. Farah Mneimneh & Hasan Ghazzawi & Mohammad Abu Hejjeh & Matteo Manganelli & Seeram Ramakrishna, 2023. "Roadmap to Achieving Sustainable Development via Green Hydrogen," Energies, MDPI, vol. 16(3), pages 1-25, January.
    4. Dillman, K.J. & Heinonen, J., 2022. "A ‘just’ hydrogen economy: A normative energy justice assessment of the hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Konstantin Gomonov & Marina Reshetnikova & Svetlana Ratner, 2023. "Economic Analysis of Recently Announced Green Hydrogen Projects in Russia: A Multiple Case Study," Energies, MDPI, vol. 16(10), pages 1-15, May.
    6. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    7. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    8. Doyeon Lee & Keunhwan Kim, 2021. "Research and Development Investment and Collaboration Framework for the Hydrogen Economy in South Korea," Sustainability, MDPI, vol. 13(19), pages 1-28, September.
    9. Shahnazi, Rouhollah & Alimohammadlou, Moslem, 2022. "Investigating risks in renewable energy in oil-producing countries through multi-criteria decision-making methods based on interval type-2 fuzzy sets: A case study of Iran," Renewable Energy, Elsevier, vol. 191(C), pages 1009-1027.
    10. Cho, Sangmin & Kim, Jinsoo & Lim, Deokoh, 2024. "Optimal design of renewable energy certificate multipliers using an LCOE-Integrated AHP model: A case study of South Korea," Renewable Energy, Elsevier, vol. 226(C).
    11. Kim, Tae-Woo & Lee, Eun-Han & Byun, Segi & Seo, Doo-Won & Hwang, Hyo-Jung & Yoon, Hyung-Chul & Kim, Hansung & Ryi, Shin-Kun, 2022. "Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition," Energy, Elsevier, vol. 260(C).
    12. Kheybari, Siamak & Kazemi, Mostafa & Rezaei, Jafar, 2019. "Bioethanol facility location selection using best-worst method," Applied Energy, Elsevier, vol. 242(C), pages 612-623.
    13. Sadik-Zada, Elkhan Richard & Santibanez Gonzalez, Ernesto DR & Gatto, Andrea & Althaus, Tomasz & Quliyev, Fuad, 2023. "Pathways to the hydrogen mobility futures in German public transportation: A scenario analysis," Renewable Energy, Elsevier, vol. 205(C), pages 384-392.
    14. Ebadi Torkayesh, Ali & Hendiani, Sepehr & Walther, Grit & Venghaus, Sandra, 2024. "Fueling the future: Overcoming the barriers to market development of renewable fuels in Germany using a novel analytical approach," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1012-1033.
    15. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.
    17. Rahemi, Hasti & Torabi, S. Ali & Avami, Akram & Jolai, Fariborz, 2020. "Bioethanol supply chain network design considering land characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Islam Hassanin & Matjaz Knez, 2022. "Managing Supply Chain Activities in the Field of Energy Production Focusing on Renewables," Sustainability, MDPI, vol. 14(12), pages 1-33, June.
    19. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    20. Jinyi Hu, 2023. "Linguistic Multiple-Attribute Decision Making Based on Regret Theory and Minimax-DEA," Mathematics, MDPI, vol. 11(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.