IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p195-d304080.html
   My bibliography  Save this article

An Assessment of the Formations and Structures Suitable for Safe CO 2 Geological Storage in the Upper Silesia Coal Basin in Poland in the Context of the Regulation Relating to the CCS

Author

Listed:
  • Aleksandra Koteras

    (Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland)

  • Jarosław Chećko

    (Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland)

  • Tomasz Urych

    (Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland)

  • Małgorzata Magdziarczyk

    (Faculty of Economics and Management, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland)

  • Adam Smolinski

    (Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland)

Abstract

The paper presents an analysis of the possible location of geological formations suitable for CO 2 storage in the Upper Silesia Coal Basin, Poland. The range of the reservoir has been determined on the basis of an analysis of basic geological parameters, which determine the selection criteria for sites suitable for CO 2 storage. A dynamic modelling of the CO 2 distribution in the aquifer is presented. Based on the constructed model of migration, reactivity, and geochemical transport of CO 2 in geological structures, it is possible to identify potential migration routes and escape sites of CO 2 on the surface. The analysis of the technical and geological possibilities of CO 2 storage was carried out according to the regulations of the complex Polish geological law, specifically in terms of sequestration possibilities in geological formations.

Suggested Citation

  • Aleksandra Koteras & Jarosław Chećko & Tomasz Urych & Małgorzata Magdziarczyk & Adam Smolinski, 2020. "An Assessment of the Formations and Structures Suitable for Safe CO 2 Geological Storage in the Upper Silesia Coal Basin in Poland in the Context of the Regulation Relating to the CCS," Energies, MDPI, vol. 13(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:195-:d:304080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    2. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    3. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    4. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    5. Tomasz Urych & Adam Smoliński, 2019. "Numerical Modeling of CO 2 Migration in Saline Aquifers of Selected Areas in the Upper Silesian Coal Basin in Poland," Energies, MDPI, vol. 12(16), pages 1-34, August.
    6. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    7. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Śliwińska & Aleksandra Strugała-Wilczek & Piotr Krawczyk & Agnieszka Leśniak & Tomasz Urych & Jarosław Chećko & Krzysztof Stańczyk, 2022. "Carbon Capture Utilisation and Storage Technology Development in a Region with High CO 2 Emissions and Low Storage Potential—A Case Study of Upper Silesia in Poland," Energies, MDPI, vol. 15(12), pages 1-20, June.
    2. Jānis Krūmiņš & Māris Kļaviņš & Aija Dēliņa & Raivo Damkevics & Valdis Segliņš, 2021. "Potential of the Middle Cambrian Aquifer for Carbon Dioxide Storage in the Baltic States," Energies, MDPI, vol. 14(12), pages 1-16, June.
    3. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Oleksandr Haidai & Vladyslav Ruskykh & Nataliia Ulanova & Vira Prykhodko & Edgar Cáceres Cabana & Roman Dychkovskyi & Natalia Howaniec & Adam Smolinski, 2022. "Mine Field Preparation and Coal Mining in Western Donbas: Energy Security of Ukraine—A Case Study," Energies, MDPI, vol. 15(13), pages 1-12, June.
    5. Jarosław Chećko & Tomasz Urych & Małgorzata Magdziarczyk & Adam Smolinski, 2020. "Research on the Processes of Injecting CO 2 into Coal Seams with CH 4 Recovery Using Horizontal Wells," Energies, MDPI, vol. 13(2), pages 1-20, January.
    6. Karolina Wojtacha-Rychter & Piotr Kucharski & Adam Smolinski, 2021. "Conventional and Alternative Sources of Thermal Energy in the Production of Cement—An Impact on CO 2 Emission," Energies, MDPI, vol. 14(6), pages 1-15, March.
    7. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    8. Jarosław Chećko & Tomasz Urych & Małgorzata Magdziarczyk & Adam Smoliński, 2020. "Resource Assessment and Numerical Modeling of CBM Extraction in the Upper Silesian Coal Basin, Poland," Energies, MDPI, vol. 13(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    2. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    3. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    4. Christophe Loussouarn & Carine Franc & Yann Videau & Julien Mousquès, 2021. "Can General Practitioners Be More Productive? The Impact of Teamwork and Cooperation with Nurses on GP Activities," Health Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 680-698, March.
    5. Tschakert, Petra, 2016. "Shifting Discourses of Vilification and the Taming of Unruly Mining Landscapes in Ghana," World Development, Elsevier, vol. 86(C), pages 123-132.
    6. María-Consuelo Casabán & Rafael Company & Lucas Jódar, 2020. "Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness," Mathematics, MDPI, vol. 8(7), pages 1-16, July.
    7. Isabelle Boutron & Peter John & David J. Torgerson, 2010. "Reporting Methodological Items in Randomized Experiments in Political Science," The ANNALS of the American Academy of Political and Social Science, , vol. 628(1), pages 112-131, March.
    8. Ben Slimane, Faten & Padilla Angulo, Laura, 2019. "Strategic change and corporate governance: Evidence from the stock exchange industry," Journal of Business Research, Elsevier, vol. 103(C), pages 206-218.
    9. Bossert, Walter & Derks, Jean & Peters, Hans, 2005. "Efficiency in uncertain cooperative games," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 12-23, July.
    10. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    11. Sin-Yu Ho & N.M. Odhiambo, 2018. "Analysing the macroeconomic drivers of stock market development in the Philippines," Cogent Economics & Finance, Taylor & Francis Journals, vol. 6(1), pages 1451265-145, January.
    12. Natalia Nikolaevna Natocheeva* & Yuri Alexandrovich Rovensky & Yuri Yuryevich Rusanov & Tatiana Viktorovna Belyanchikova & Anna Anatolevna Staurskaya, 2018. "Optimizing Variability of Approaches to Regulatory Financing of Higher Education Services," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 221-227:3.
    13. Philip Arestis & Howard Stein, 2005. "An Institutional Perspective to Finance and Development as an Alternative to Financial Liberalisation," International Review of Applied Economics, Taylor & Francis Journals, vol. 19(4), pages 381-398.
    14. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    15. Cabada, Alberto & Fernández-Gómez, Carlos, 2015. "Constant sign solutions of two-point fourth order problems," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 122-133.
    16. Andy Hall, 2005. "Capacity development for agricultural biotechnology in developing countries: an innovation systems view of what it is and how to develop it," Journal of International Development, John Wiley & Sons, Ltd., vol. 17(5), pages 611-630.
    17. Athinoula A. Kosti & Simon Colreavy-Donnelly & Fabio Caraffini & Zacharias A. Anastassi, 2020. "Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    18. Bruno Frey, 2005. "Problems with Publishing: Existing State and Solutions," European Journal of Law and Economics, Springer, vol. 19(2), pages 173-190, April.
    19. Lan, Heng-you, 2021. "Approximation-solvability of population biology systems based on p-Laplacian elliptic inequalities with demicontinuous strongly pseudo-contractive operators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. D. F. M. Torres & G. Leitmann, 2008. "Contrasting Two Transformation-based Methods for Obtaining Absolute Extrema," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 53-59, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:195-:d:304080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.