Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2022.112299
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Xuanlie & Ning, Dezhi, 2018. "Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons," Energy, Elsevier, vol. 155(C), pages 226-233.
- Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
- El Marjani, A. & Castro Ruiz, F. & Rodriguez, M.A. & Parra Santos, M.T., 2008. "Numerical modelling in wave energy conversion systems," Energy, Elsevier, vol. 33(8), pages 1246-1253.
- Moretti, Giacomo & Malara, Giovanni & Scialò, Andrea & Daniele, Luca & Romolo, Alessandra & Vertechy, Rocco & Fontana, Marco & Arena, Felice, 2020. "Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator," Renewable Energy, Elsevier, vol. 146(C), pages 628-642.
- Xuanlie Zhao & Dezhi Ning & Chongwei Zhang & Yingyi Liu & Haigui Kang, 2017. "Analytical Study on an Oscillating Buoy Wave Energy Converter Integrated into a Fixed Box-Type Breakwater," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, May.
- Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
- Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
- Ning, De-zhi & Wang, Rong-quan & Chen, Li-fen & Sun, Ke, 2019. "Experimental investigation of a land-based dual-chamber OWC wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 48-60.
- Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot & Yuan, Zhiming & Incecik, Atilla, 2021. "Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters," Applied Energy, Elsevier, vol. 292(C).
- He, Fang & Huang, Zhenhua & Law, Adrian Wing-Keung, 2013. "An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction," Applied Energy, Elsevier, vol. 106(C), pages 222-231.
- Cui, Lin & Zheng, Siming & Zhang, Yongliang & Miles, Jon & Iglesias, Gregorio, 2021. "Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
- Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
- Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
- Wang, Chen & Zhang, Yongliang, 2021. "Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study," Energy, Elsevier, vol. 222(C).
- Ning, De-Zhi & Shi, Jin & Zou, Qing-Ping & Teng, Bin, 2015. "Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)," Energy, Elsevier, vol. 83(C), pages 177-188.
- Asai, Takehiko & Sugiura, Keita, 2021. "Numerical evaluation of a two-body point absorber wave energy converter with a tuned inerter," Renewable Energy, Elsevier, vol. 171(C), pages 217-226.
- Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
- Madhi, Farshad & Yeung, Ronald W., 2018. "On survivability of asymmetric wave-energy converters in extreme waves," Renewable Energy, Elsevier, vol. 119(C), pages 891-909.
- Jin, Siya & Greaves, Deborah, 2021. "Wave energy in the UK: Status review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
- Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
- Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cheng, Yong & Fu, Lei & Dai, Saishuai & Collu, Maurizio & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot & Yuan, Zhiming & Incecik, Atilla, 2021. "Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters," Applied Energy, Elsevier, vol. 292(C).
- Cheng, Yong & Du, Weiming & Dai, Saishuai & Yuan, Zhiming & Incecik, Atilla, 2024. "Wave energy conversion by an array of oscillating water columns deployed along a long-flexible floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
- Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).
- Zhao, Xuanlie & Zhang, Yang & Li, Mingwei & Johanning, Lars, 2020. "Hydrodynamic performance of a Comb-Type Breakwater-WEC system: An analytical study," Renewable Energy, Elsevier, vol. 159(C), pages 33-49.
- Yang, Can & Xu, Tingting & Wan, Chang & Liu, Hengxu & Su, Zuohang & Zhao, Lujun & Chen, Hailong & Johanning, Lars, 2023. "Numerical investigation of a dual cylindrical OWC hybrid system incorporated into a fixed caisson breakwater," Energy, Elsevier, vol. 263(PE).
- Ren, Junqing & Jin, Peng & Liu, Yingyi & Zang, Jun, 2021. "Wave attenuation and focusing by a parabolic arc pontoon breakwater," Energy, Elsevier, vol. 217(C).
- Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Li, Mingxin & Yuan, Zhiming & Incecik, Atilla, 2022. "Wave energy extraction and hydroelastic response reduction of modular floating breakwaters as array wave energy converters integrated into a very large floating structure," Applied Energy, Elsevier, vol. 306(PA).
- Wang, Rong-quan & Ning, De-zhi, 2020. "Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity," Renewable Energy, Elsevier, vol. 150(C), pages 578-588.
- Huang, Shijie & Huang, Zhenhua, 2022. "Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns," Renewable Energy, Elsevier, vol. 195(C), pages 344-356.
- Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
- Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).
- Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
- Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
- Gang, Ao & Guo, Baoming & Hu, Zhongbo & Hu, Rui, 2022. "Performance analysis of a coast – OWC wave energy converter integrated system," Applied Energy, Elsevier, vol. 311(C).
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Hydrodynamic performance of a heaving oscillating water column device restrained by a spring-damper system," Renewable Energy, Elsevier, vol. 187(C), pages 331-346.
- Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
- Zhou, Binzhen & Zheng, Zhi & Zhang, Qi & Jin, Peng & Wang, Lei & Ning, Dezhi, 2023. "Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters," Energy, Elsevier, vol. 271(C).
More about this item
Keywords
Wave energy converter; Oscillating water column; Oscillating buoy; Floating breakwater; Integrated system; Fully non-linear simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002167. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.