Hydrodynamic performance of a Comb-Type Breakwater-WEC system: An analytical study
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.05.100
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Stefano Parmeggiani & Jens Peter Kofoed & Erik Friis-Madsen, 2013. "Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter," Energies, MDPI, vol. 6(4), pages 1-32, April.
- Zhao, Xuanlie & Ning, Dezhi, 2018. "Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons," Energy, Elsevier, vol. 155(C), pages 226-233.
- Raúl Cascajo & Emilio García & Eduardo Quiles & Antonio Correcher & Francisco Morant, 2019. "Integration of Marine Wave Energy Converters into Seaports: A Case Study in the Port of Valencia," Energies, MDPI, vol. 12(5), pages 1-24, February.
- Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
- Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
- Margheritini, L. & Vicinanza, D. & Frigaard, P., 2009. "SSG wave energy converter: Design, reliability and hydraulic performance of an innovative overtopping device," Renewable Energy, Elsevier, vol. 34(5), pages 1371-1380.
- Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
- Madhi, Farshad & Yeung, Ronald W., 2018. "On survivability of asymmetric wave-energy converters in extreme waves," Renewable Energy, Elsevier, vol. 119(C), pages 891-909.
- Daniel Raj, D. & Sundar, V. & Sannasiraj, S.A., 2019. "Enhancement of hydrodynamic performance of an Oscillating Water Column with harbour walls," Renewable Energy, Elsevier, vol. 132(C), pages 142-156.
- Moretti, Giacomo & Malara, Giovanni & Scialò, Andrea & Daniele, Luca & Romolo, Alessandra & Vertechy, Rocco & Fontana, Marco & Arena, Felice, 2020. "Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator," Renewable Energy, Elsevier, vol. 146(C), pages 628-642.
- Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
- Xuanlie Zhao & Dezhi Ning & Chongwei Zhang & Haigui Kang, 2017. "Hydrodynamic Investigation of an Oscillating Buoy Wave Energy Converter Integrated into a Pile-Restrained Floating Breakwater," Energies, MDPI, vol. 10(5), pages 1-16, May.
- Saadat, Y. & Fernandez, Nelson & Samimi, Alexei & Alam, Mohammad Reza & Shakeri, Mostafa & Ghorbani, Reza, 2016. "Investigating of Helmholtz wave energy converter," Renewable Energy, Elsevier, vol. 87(P1), pages 67-76.
- Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
- Kuo, Yu-Shu & Chung, Chih-Yin & Hsiao, Shih-Chun & Wang, Yu-Kai, 2017. "Hydrodynamic characteristics of Oscillating Water Column caisson breakwaters," Renewable Energy, Elsevier, vol. 103(C), pages 439-447.
- Chen, Qiang & Zang, Jun & Birchall, Jonathan & Ning, Dezhi & Zhao, Xuanlie & Gao, Junliang, 2020. "On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater," Renewable Energy, Elsevier, vol. 146(C), pages 414-425.
- Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Yuhan & Wang, Dongxu & Dong, Sheng, 2022. "A theoretical model for an integrated wave energy extraction system consisting of a heaving buoy and a perforated wall," Renewable Energy, Elsevier, vol. 189(C), pages 1086-1101.
- Zhang, Yang & Zhao, Xuanlie & Geng, Jing & Göteman, Malin & Tao, Longbin, 2022. "Wave power extraction and coastal protection by a periodic array of oscillating buoys embedded in a breakwater," Renewable Energy, Elsevier, vol. 190(C), pages 434-456.
- Zhao, Xuanlie & Zhang, Yang & Li, Mingwei & Johanning, Lars, 2021. "Experimental and analytical investigation on hydrodynamic performance of the comb-type breakwater-wave energy converter system with a flange," Renewable Energy, Elsevier, vol. 172(C), pages 392-407.
- Huang, Shijie & Huang, Zhenhua, 2022. "Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns," Renewable Energy, Elsevier, vol. 195(C), pages 344-356.
- Zhou, Yu & Chen, Lifen & Zhao, Jie & Liu, Xiangjian & Ye, Xiaorong & Wang, Fei & Adcock, Thomas A.A. & Ning, Dezhi, 2023. "Power and dynamic performance of a floating multi-functional platform: An experimental study," Energy, Elsevier, vol. 285(C).
- Zhou, Binzhen & Zheng, Zhi & Zhang, Qi & Jin, Peng & Wang, Lei & Ning, Dezhi, 2023. "Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters," Energy, Elsevier, vol. 271(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).
- Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
- Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot & Yuan, Zhiming & Incecik, Atilla, 2021. "Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters," Applied Energy, Elsevier, vol. 292(C).
- Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
- Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
- Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
- Zhao, Xuanlie & Zhang, Yang & Li, Mingwei & Johanning, Lars, 2021. "Experimental and analytical investigation on hydrodynamic performance of the comb-type breakwater-wave energy converter system with a flange," Renewable Energy, Elsevier, vol. 172(C), pages 392-407.
- Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).
- Wang, Yuhan & Wang, Dongxu & Dong, Sheng, 2022. "A theoretical model for an integrated wave energy extraction system consisting of a heaving buoy and a perforated wall," Renewable Energy, Elsevier, vol. 189(C), pages 1086-1101.
- Berrio, Y. & Rivillas-Ospina, G. & Ruiz-Martínez, G. & Arango-Manrique, A. & Ricaurte, C. & Mendoza, E. & Silva, R. & Casas, D. & Bolívar, M. & Díaz, K., 2023. "Energy conversion and beach protection: Numerical assessment of a dual-purpose WEC farm," Renewable Energy, Elsevier, vol. 219(P2).
- Ren, Junqing & Jin, Peng & Liu, Yingyi & Zang, Jun, 2021. "Wave attenuation and focusing by a parabolic arc pontoon breakwater," Energy, Elsevier, vol. 217(C).
- Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Li, Mingxin & Yuan, Zhiming & Incecik, Atilla, 2022. "Wave energy extraction and hydroelastic response reduction of modular floating breakwaters as array wave energy converters integrated into a very large floating structure," Applied Energy, Elsevier, vol. 306(PA).
- Wang, Yuhan & Dong, Sheng, 2022. "Array of concentric perforated cylindrical systems with torus oscillating bodies integrated on inner cylinders," Applied Energy, Elsevier, vol. 327(C).
- Huang, Shijie & Huang, Zhenhua, 2022. "Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns," Renewable Energy, Elsevier, vol. 195(C), pages 344-356.
- Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
- Ruijia Jin & Jiawei Wang & Hanbao Chen & Baolei Geng & Zhen Liu, 2022. "Numerical Investigation of Multi-Floater Truss-Type Wave Energy Convertor Platform," Energies, MDPI, vol. 15(15), pages 1-17, August.
- Tomás Cabral & Daniel Clemente & Paulo Rosa-Santos & Francisco Taveira-Pinto & Tiago Morais & Filipe Belga & Henrique Cestaro, 2020. "Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater," Energies, MDPI, vol. 13(1), pages 1-22, January.
- Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- De Zhi Ning & Xuan Lie Zhao & Li Fen Chen & Ming Zhao, 2018. "Hydrodynamic Performance of an Array of Wave Energy Converters Integrated with a Pontoon-Type Breakwater," Energies, MDPI, vol. 11(3), pages 1-17, March.
More about this item
Keywords
Comb-type breakwater; Wave energy converter; Energy conversion efficiency; Transmission coefficient; Wave resonance; Analytical investigation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:33-49. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.