IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i8p1246-1253.html
   My bibliography  Save this article

Numerical modelling in wave energy conversion systems

Author

Listed:
  • El Marjani, A.
  • Castro Ruiz, F.
  • Rodriguez, M.A.
  • Parra Santos, M.T.

Abstract

This paper deals with a numerical modelling devoted to predict the flow characteristics in the components of an oscillating water column (OWC) system used for the wave energy capture. In the present paper, the flow behaviour is modelled by using the FLUENT code. Two numerical flow models have been elaborated and tested independently in the geometries of an air chamber and a turbine, which is chosen of a radial impulse type. The flow is assumed to be three-dimensional (3D), viscous, turbulent and unsteady. The FLUENT code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the dynamic mesh and the sliding mesh techniques in areas of moving surfaces. Turbulence is modelled with the k–ε model. The obtained results indicate that the developed models are well suitable to analyse the air flows both in the air chamber and in the turbine. The performances associated with the energy transfer processes have been well predicted. For the turbine, the numerical results of pressure and torque were compared to the experimental ones. Good agreements between these results have been observed.

Suggested Citation

  • El Marjani, A. & Castro Ruiz, F. & Rodriguez, M.A. & Parra Santos, M.T., 2008. "Numerical modelling in wave energy conversion systems," Energy, Elsevier, vol. 33(8), pages 1246-1253.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:8:p:1246-1253
    DOI: 10.1016/j.energy.2008.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208000741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:8:p:1246-1253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.