Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.119964
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen Wang & Zhengzhi Deng & Pinjie Wang & Yu Yao, 2019. "Wave Power Extraction from a Dual Oscillating-Water- Column System Composed of Heave-Only and Onshore Units," Energies, MDPI, vol. 12(9), pages 1-22, May.
- John Ashlin, S. & Sundar, V. & Sannasiraj, S.A., 2016. "Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics," Renewable Energy, Elsevier, vol. 96(PA), pages 341-353.
- Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
- Deng, Zhengzhi & Wang, Chen & Wang, Peng & Higuera, Pablo & Wang, Ruoqian, 2019. "Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study," Energy, Elsevier, vol. 187(C).
- Luo, Yongyao & Wang, Zhengwei & Peng, Guangjie & Xiao, Yexiang & Zhai, Liming & Liu, Xin & Zhang, Qi, 2014. "Numerical simulation of a heave-only floating OWC (oscillating water column) device," Energy, Elsevier, vol. 76(C), pages 799-806.
- He, Fang & Huang, Zhenhua & Law, Adrian Wing-Keung, 2013. "An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction," Applied Energy, Elsevier, vol. 106(C), pages 222-231.
- Rezanejad, K. & Bhattacharjee, J. & Guedes Soares, C., 2015. "Analytical and numerical study of dual-chamber oscillating water columns on stepped bottom," Renewable Energy, Elsevier, vol. 75(C), pages 272-282.
- Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
- Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
- Zhang, Yali & Zou, Qing-Ping & Greaves, Deborah, 2012. "Air–water two-phase flow modelling of hydrodynamic performance of an oscillating water column device," Renewable Energy, Elsevier, vol. 41(C), pages 159-170.
- Rezanejad, K. & Guedes Soares, C., 2018. "Enhancing the primary efficiency of an oscillating water column wave energy converter based on a dual-mass system analogy," Renewable Energy, Elsevier, vol. 123(C), pages 730-747.
- Liberti, Luca & Carillo, Adriana & Sannino, Gianmaria, 2013. "Wave energy resource assessment in the Mediterranean, the Italian perspective," Renewable Energy, Elsevier, vol. 50(C), pages 938-949.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2021. "Theoretical analysis on hydrodynamic performance for a dual-chamber oscillating water column device with a pitching front lip-wall," Energy, Elsevier, vol. 226(C).
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Inclusion of a pitching mid-wall for a dual-chamber oscillating water column wave energy converter device," Renewable Energy, Elsevier, vol. 185(C), pages 1177-1191.
- Zhigang Liu & Wei Huang & Shi Liu & Xiaomei Wu & Chun Sing Lai & Yi Yang, 2023. "An Improved Hydraulic Energy Storage Wave Power-Generation System Based on QPR Control," Energies, MDPI, vol. 16(2), pages 1-18, January.
- Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
- Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Wave power extraction for an oscillating water column device consisting of a surging front and back lip-wall: An analytical study," Renewable Energy, Elsevier, vol. 184(C), pages 100-114.
- Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Trivedi, Kshma & Koley, Santanu, 2023. "Mathematical modeling of oscillating water column wave energy converter devices placed over an undulated seabed in a two-layer fluid system," Renewable Energy, Elsevier, vol. 216(C).
- Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
- Zhu, Guixun & Samuel, John & Zheng, Siming & Hughes, Jason & Simmonds, David & Greaves, Deborah, 2023. "Numerical investigation on the hydrodynamic performance of a 2D U-shaped Oscillating Water Column wave energy converter," Energy, Elsevier, vol. 274(C).
- Nicholas Ulm & Zhenhua Huang & Patrick Cross, 2023. "Experimental Study of a Fixed OWC-Type Wave Energy Converter with a Heave Plate and V-Shaped Channels for Intermediate-Water-Depth Applications," Energies, MDPI, vol. 16(16), pages 1-30, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Chen & Zhang, Yongliang, 2021. "Numerical investigation on the wave power extraction for a 3D dual-chamber oscillating water column system composed of two closely connected circular sub-units," Applied Energy, Elsevier, vol. 295(C).
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2021. "Theoretical analysis on hydrodynamic performance for a dual-chamber oscillating water column device with a pitching front lip-wall," Energy, Elsevier, vol. 226(C).
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Wave power extraction for an oscillating water column device consisting of a surging front and back lip-wall: An analytical study," Renewable Energy, Elsevier, vol. 184(C), pages 100-114.
- Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
- Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
- Cui, Lin & Zheng, Siming & Zhang, Yongliang & Miles, Jon & Iglesias, Gregorio, 2021. "Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Ning, De-zhi & Wang, Rong-quan & Chen, Li-fen & Sun, Ke, 2019. "Experimental investigation of a land-based dual-chamber OWC wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 48-60.
- Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
- Deng, Zhengzhi & Wang, Chen & Wang, Peng & Higuera, Pablo & Wang, Ruoqian, 2019. "Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study," Energy, Elsevier, vol. 187(C).
- Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
- Kharati-Koopaee, Masoud & Fathi-Kelestani, Arman, 2020. "Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes," Renewable Energy, Elsevier, vol. 147(P1), pages 1595-1608.
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Hydrodynamic performance of a heaving oscillating water column device restrained by a spring-damper system," Renewable Energy, Elsevier, vol. 187(C), pages 331-346.
- Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
- Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Inclusion of a pitching mid-wall for a dual-chamber oscillating water column wave energy converter device," Renewable Energy, Elsevier, vol. 185(C), pages 1177-1191.
- He, Fang & Pan, Jiapeng & Lin, Yuan & Song, Mengxia & Zheng, Siming, 2024. "Laboratory modelling of nonlinear power take-off damping and its effects on an offshore stationary cylindrical OWC device," Energy, Elsevier, vol. 296(C).
- Liu, Zhen & Xu, Chuanli & Zhang, Xiaoxia & Ning, Dezhi, 2023. "Experimental study on an isolated oscillating water column wave energy converting device in oblique waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Zheng, Siming & Zhu, Guixun & Simmonds, David & Greaves, Deborah & Iglesias, Gregorio, 2020. "Wave power extraction from a tubular structure integrated oscillating water column," Renewable Energy, Elsevier, vol. 150(C), pages 342-355.
- Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Choi, Jongsu & Hyun, Beom-soo, 2021. "An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
- Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
More about this item
Keywords
Marine energy; OWC device; Integrated system; Immersed horizontal plate; Submerged breakwater;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002139. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.