IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v159y2022ics1364032122000612.html
   My bibliography  Save this article

Recycling and utilization of calcium carbide slag - current status and new opportunities

Author

Listed:
  • Gong, Xuzhong
  • Zhang, Tong
  • Zhang, Junqiang
  • Wang, Zhi
  • Liu, Junhao
  • Cao, Jianwei
  • Wang, Chuan

Abstract

Coal is the dominant fuel in China to provide primary energy, and 70% of polyvinyl chloride is produced from coal-based CaC2. CaC2 reacts with water to produce acetylene and calcium carbide slag (CCS) as a solid waste for polyvinyl chloride production. Approximate 40 million tons of dry CCS are generated annually in China, among which only a small part is used in cement and as desulfurization agents. In contrast, most of the CCS is accumulated, occupying land and posing environmental risks. For the chlor-alkali industry, CCS can regenerate massive CaO through purification, molding, calcination. Thus, CCS can be used as raw material for CaC2 production, thereby realizing renewable and sustainable utilization of calcium resources. Therefore, the recycling of CCS decreases the need for limestone extraction, leading to reduced CO2 emission, energy consumption, and solid waste pollution. For example, if CaO is produced by CCS instead of natural limestone, 20 million tons of CO2 emissions can be reduced each year. While the massive CaO with high thermal strength is crucial for the CaC2 production in the electric arc furnace, enabling CCS recycling and sustainable utilization.

Suggested Citation

  • Gong, Xuzhong & Zhang, Tong & Zhang, Junqiang & Wang, Zhi & Liu, Junhao & Cao, Jianwei & Wang, Chuan, 2022. "Recycling and utilization of calcium carbide slag - current status and new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122000612
    DOI: 10.1016/j.rser.2022.112133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122000612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianwei Song & Chaoji Chen & Shuze Zhu & Mingwei Zhu & Jiaqi Dai & Upamanyu Ray & Yiju Li & Yudi Kuang & Yongfeng Li & Nelson Quispe & Yonggang Yao & Amy Gong & Ulrich H. Leiste & Hugh A. Bruck & J. Y, 2018. "Processing bulk natural wood into a high-performance structural material," Nature, Nature, vol. 554(7691), pages 224-228, February.
    2. Song, Kyungsun & Jang, Young-Nam & Kim, Wonbaek & Lee, Myung Gyu & Shin, Dongbok & Bang, Jun-Hwan & Jeon, Chi Wan & Chae, Soo Chun, 2014. "Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum," Energy, Elsevier, vol. 65(C), pages 527-532.
    3. Yin, Shaowu & Wang, Hongyu & Wang, Li & Liu, Chuanping & Tong, Lige, 2021. "Influencing factors and evaluation system for Carbon–Calcium pellet performance in a pyrolysis furnace," Energy, Elsevier, vol. 214(C).
    4. Marcel Schreier & Laura Curvat & Fabrizio Giordano & Ludmilla Steier & Antonio Abate & Shaik M. Zakeeruddin & Jingshan Luo & Matthew T. Mayer & Michael Grätzel, 2015. "Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    5. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    6. Ma, Xiaotong & Li, Yingjie & Shi, Lei & He, Zirui & Wang, Zeyan, 2016. "Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process," Applied Energy, Elsevier, vol. 168(C), pages 85-95.
    7. Ortiz, C. & Romano, M.C. & Valverde, J.M. & Binotti, M. & Chacartegui, R., 2018. "Process integration of Calcium-Looping thermochemical energy storage system in concentrating solar power plants," Energy, Elsevier, vol. 155(C), pages 535-551.
    8. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    9. Valverde, J.M. & Sanchez-Jimenez, P.E. & Perez-Maqueda, L.A., 2014. "Calcium-looping for post-combustion CO2 capture. On the adverse effect of sorbent regeneration under CO2," Applied Energy, Elsevier, vol. 126(C), pages 161-171.
    10. Lee, Jae Won & Kim, Seonggon & Torres Pineda, Israel & Kang, Yong Tae, 2021. "Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    12. Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
    13. Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2015. "Improving the stability of synthetic CaO-based CO2 sorbents by structural promoters," Applied Energy, Elsevier, vol. 156(C), pages 331-343.
    14. Barelli, L. & Bidini, G. & Di Michele, A. & Gallorini, F. & Petrillo, C. & Sacchetti, F., 2014. "Synthesis and test of sorbents based on calcium aluminates for SE-SR," Applied Energy, Elsevier, vol. 127(C), pages 81-92.
    15. Huo, Hailong & Liu, Xunliang & Wen, Zhi & Lou, Guofeng & Dou, Ruifeng & Su, Fuyong & Zhou, Wenning & Jiang, Zeyi, 2021. "Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment," Energy, Elsevier, vol. 228(C).
    16. Xie, Xin & Li, Yingjie & Wang, Wenjing & Shi, Lei, 2014. "HCl removal using cycled carbide slag from calcium looping cycles," Applied Energy, Elsevier, vol. 135(C), pages 391-401.
    17. Sanchez-Jimenez, P.E. & Perez-Maqueda, L.A. & Valverde, J.M., 2014. "Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions," Applied Energy, Elsevier, vol. 118(C), pages 92-99.
    18. Aihara, Masahiko & Nagai, Toshiyuki & Matsushita, Junro & Negishi, Yoichi & Ohya, Haruhiko, 2001. "Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction," Applied Energy, Elsevier, vol. 69(3), pages 225-238, July.
    19. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    20. Sun, Jian & Sun, Yu & Yang, Yuandong & Tong, Xianliang & Liu, Wenqiang, 2019. "Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature," Applied Energy, Elsevier, vol. 242(C), pages 919-930.
    21. Chen, Huichao & Zhao, Changsui & Yang, Yanmei & Zhang, Pingping, 2012. "CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation," Applied Energy, Elsevier, vol. 91(1), pages 334-340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Rui & Li, Chongcong & Zheng, Jinhao & Xue, Feilong & Yang, Mingjun & Zhang, Yan, 2023. "Hydrogen-rich syngas production via sorption-enhanced steam gasification of biomass using FexNiyCaO bi-functional materials," Energy, Elsevier, vol. 281(C).
    2. Yang, Jie & Dong, Senlin & Xie, Longgui & Cen, Qihong & Zheng, Dalong & Ma, Liping & Dai, Quxiu, 2023. "Analysis of hydrogen-rich syngas generation in chemical looping gasification of lignite: Application of carbide slag as the oxygen carrier, hydrogen carrier, and in-situ carbon capture agent," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Chenglin & Duan, Lunbo & Donat, Felix & Anthony, Edward John, 2018. "From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture," Applied Energy, Elsevier, vol. 210(C), pages 117-126.
    2. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    3. Ma, Xiaotong & Li, Yingjie & Shi, Lei & He, Zirui & Wang, Zeyan, 2016. "Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process," Applied Energy, Elsevier, vol. 168(C), pages 85-95.
    4. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    5. Shi, Jiewen & Li, Yingjie & Zhang, Qing & Ma, Xiaotong & Duan, Lunbo & Zhou, Xingang, 2017. "CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions," Applied Energy, Elsevier, vol. 203(C), pages 412-421.
    6. Sun, Hao & Li, Yingjie & Yan, Xianyao & Zhao, Jianli & Wang, Zeyan, 2020. "Thermochemical energy storage performance of Al2O3/CeO2 co-doped CaO-based material under high carbonation pressure," Applied Energy, Elsevier, vol. 263(C).
    7. Li, Caili & Li, Yingjie & Fang, Yi & Zhang, Chunxiao & Ren, Yu, 2024. "TiO2/MnFe2O4 co-modified alkaline papermaking waste for CaO-CaCO3 thermochemical energy storage," Applied Energy, Elsevier, vol. 362(C).
    8. Ma, Xiaotong & Li, Yingjie & Duan, Lunbo & Anthony, Edward & Liu, Hantao, 2018. "CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions," Applied Energy, Elsevier, vol. 225(C), pages 402-412.
    9. Ying Yang & Yingjie Li & Xianyao Yan & Jianli Zhao & Chunxiao Zhang, 2021. "Development of Thermochemical Heat Storage Based on CaO/CaCO 3 Cycles: A Review," Energies, MDPI, vol. 14(20), pages 1-26, October.
    10. Xie, Xin & Li, Yingjie & Wang, Wenjing & Shi, Lei, 2014. "HCl removal using cycled carbide slag from calcium looping cycles," Applied Energy, Elsevier, vol. 135(C), pages 391-401.
    11. Sánchez Jiménez, Pedro E. & Perejón, Antonio & Benítez Guerrero, Mónica & Valverde, José M. & Ortiz, Carlos & Pérez Maqueda, Luis A., 2019. "High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 235(C), pages 543-552.
    12. Han, Rui & Gao, Jihui & Wei, Siyu & Su, Yanlin & Sun, Fei & Zhao, Guangbo & Qin, Yukun, 2018. "Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage," Applied Energy, Elsevier, vol. 231(C), pages 412-422.
    13. Jing, Jie-ying & Zhang, Xue-wei & Li, Qing & Li, Ting-yu & Li, Wen-ying, 2018. "Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere," Applied Energy, Elsevier, vol. 220(C), pages 419-425.
    14. Jing, Jie-ying & Li, Ting-yu & Zhang, Xue-wei & Wang, Shi-dong & Feng, Jie & Turmel, William A. & Li, Wen-ying, 2017. "Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism," Applied Energy, Elsevier, vol. 199(C), pages 225-233.
    15. Chi, Changyun & Li, Yingjie & Zhang, Wan & Wang, Zeyan, 2019. "Synthesis of a hollow microtubular Ca/Al sorbent with high CO2 uptake by hard templating," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Benitez-Guerrero, Monica & Valverde, Jose Manuel & Perejon, Antonio & Sanchez-Jimenez, Pedro E. & Perez-Maqueda, Luis A., 2018. "Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power," Applied Energy, Elsevier, vol. 210(C), pages 108-116.
    17. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    19. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    20. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122000612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.