IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v138y2021ics1364032120308091.html
   My bibliography  Save this article

Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria

Author

Listed:
  • Lee, Jae Won
  • Kim, Seonggon
  • Torres Pineda, Israel
  • Kang, Yong Tae

Abstract

Nanoabsorbents manufactured by dispersing nanomaterials in liquid absorbents have attracted considerable attention from researchers and exhibit various promising applications because of their excellent heat- and mass-transfer characteristics. Therefore, many experimental and theoretical studies have been conducted recently to investigate the mass-transfer performance enhancement of nanoabsorbents in different fields. This paper reviews the mass-transfer characteristics and enhancement mechanisms of nanoabsorbents for CO2 capture. The proposed enhancement mechanisms are discussed in terms of both absorption (bubble breaking, shuttle, and interfacial mixing effects) and regeneration (activation energy, thermal, and surface effects) processes using nanoabsorbents. The results of laboratory-scale experiments and parametrical analysis indicate that the CO2 absorption performance of nanomaterials is maximized when they exhibit a high surface area, high thermal conductivity, small cluster size, and magnetic properties, which can be explained using the proposed theoretical models. Based on this, the following selection criteria for nanomaterials to maximize the CO2 absorption/regeneration performance are proposed: thermophysical properties, powder/cluster size, concentration, and addition of nanoabsorbents. In the future, mass-transfer studies need to be conducted for real-life applications and should account for dispersion stability and integrated absorption/regeneration processes. Moreover, optimum geometric conditions and gas–liquid contact modes need to be achieved in the reactor for real-life applications. Finally, this paper suggests future research directions for the absorption and regeneration of CO2 for industrial applications, including the scale-up method, numerical approach, and life cycle analysis.

Suggested Citation

  • Lee, Jae Won & Kim, Seonggon & Torres Pineda, Israel & Kang, Yong Tae, 2021. "Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120308091
    DOI: 10.1016/j.rser.2020.110524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kawasaki, Toshiyuki & Obara, Shin'ya, 2020. "CO2 hydrate heat cycle using a carbon fiber supported catalyst for gas hydrate formation processes," Applied Energy, Elsevier, vol. 269(C).
    2. Arshadi, M. & Taghvaei, H. & Abdolmaleki, M.K. & Lee, M. & Eskandarloo, H. & Abbaspourrad, A., 2019. "Carbon dioxide absorption in water/nanofluid by a symmetric amine-based nanodendritic adsorbent," Applied Energy, Elsevier, vol. 242(C), pages 1562-1572.
    3. Lee, Jae Won & Torres Pineda, Israel & Lee, Jung Hun & Kang, Yong Tae, 2016. "Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents," Applied Energy, Elsevier, vol. 178(C), pages 164-176.
    4. Lee, Jong Sung & Lee, Jae Won & Kang, Yong Tae, 2015. "CO2 absorption/regeneration enhancement in DI water with suspended nanoparticles for energy conversion application," Applied Energy, Elsevier, vol. 143(C), pages 119-129.
    5. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    6. Hidalgo, D. & Sanz-Bedate, S. & Martín-Marroquín, J.M. & Castro, J. & Antolín, G., 2020. "Selective separation of CH4 and CO2 using membrane contactors," Renewable Energy, Elsevier, vol. 150(C), pages 935-942.
    7. Lee, Jae Won & Kang, Yong Tae, 2013. "CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution," Energy, Elsevier, vol. 53(C), pages 206-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Liu & Chengdong Kong & Liu Yang & Xiaojiang Wu & Zhongxiao Zhang, 2022. "Enhancement of mass transfer performance by nanoparticles during the CO2 absorption with MDEA solution in a randomly packed tower," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(6), pages 738-750, December.
    2. Gong, Xuzhong & Zhang, Tong & Zhang, Junqiang & Wang, Zhi & Liu, Junhao & Cao, Jianwei & Wang, Chuan, 2022. "Recycling and utilization of calcium carbide slag - current status and new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yifeng & Song, Shuailong & Li, Ning & Wu, Jian & Lu, Xiaohua & Ji, Xiaoyan, 2022. "Developing hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/water absorbent for CO2 separation," Applied Energy, Elsevier, vol. 326(C).
    2. Arshadi, M. & Taghvaei, H. & Abdolmaleki, M.K. & Lee, M. & Eskandarloo, H. & Abbaspourrad, A., 2019. "Carbon dioxide absorption in water/nanofluid by a symmetric amine-based nanodendritic adsorbent," Applied Energy, Elsevier, vol. 242(C), pages 1562-1572.
    3. Zarei, Fariba & Bagherzadeh Jahromi, Farideh & Elhambakhsh, Abbas & Keshavarz, Peyman, 2023. "Enhanced CO2 absorption and reduced regeneration energy consumption using modified magnetic NPs," Energy, Elsevier, vol. 278(C).
    4. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Zhang, Zhien & Cai, Jianchao & Chen, Feng & Li, Hao & Zhang, Wenxiang & Qi, Wenjie, 2018. "Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status," Renewable Energy, Elsevier, vol. 118(C), pages 527-535.
    6. Lee, Jae Won & Torres Pineda, Israel & Lee, Jung Hun & Kang, Yong Tae, 2016. "Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents," Applied Energy, Elsevier, vol. 178(C), pages 164-176.
    7. Siti Aishah Mohd Rozaiddin & Kok Keong Lau, 2022. "A Review on Enhancing Solvent Regeneration in CO 2 Absorption Process Using Nanoparticles," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    8. Susmita Datta Peu & Arnob Das & Md. Sanowar Hossain & Md. Abdul Mannan Akanda & Md. Muzaffer Hosen Akanda & Mahbubur Rahman & Md. Naim Miah & Barun K. Das & Abu Reza Md. Towfiqul Islam & Mostafa M. Sa, 2023. "A Comprehensive Review on Recent Advancements in Absorption-Based Post Combustion Carbon Capture Technologies to Obtain a Sustainable Energy Sector with Clean Environment," Sustainability, MDPI, vol. 15(7), pages 1-33, March.
    9. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    10. Amaris, Carlos & Bourouis, Mahmoud & Vallès, Manel, 2014. "Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber," Energy, Elsevier, vol. 68(C), pages 519-528.
    11. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    12. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    13. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    14. Dindi, Abdallah & Quang, Dang Viet & Abu-Zahra, Mohammad R.M., 2015. "Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine," Applied Energy, Elsevier, vol. 154(C), pages 298-308.
    15. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    16. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    17. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    18. Ashouri, Mahyar & Chhokar, Callum & Bahrami, Majid, 2024. "A novel microgroove-based absorber for sorption heat transformation systems: Analytical modeling and experimental investigation," Energy, Elsevier, vol. 307(C).
    19. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    20. Ronald Ssebadduka & Kyuro Sasaki & Yuichi Sugai, 2020. "An Analysis of the Possible Financial Savings of a Carbon Capture Process through Carbon Dioxide Absorption and Geological Dumping," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 266-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120308091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.