IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i7p1860-1873.html
   My bibliography  Save this article

Using power ultrasound for the regeneration of dehumidizers in desiccant air-conditioning systems: A review of prospective studies and unexplored issues

Author

Listed:
  • Yao, Ye

Abstract

Regeneration of dehumidizers is the most important stage in the working cycle of desiccant system. The lower regeneration temperature will be favorable for the energy efficiency of the whole system. Ultrasonic technology may be a promising method of dehydration applied to the regeneration of desiccant. As a non-heating method, the power ultrasonic may help lower the regeneration temperature and bring about energy savings. In the present paper, the mechanism of ultrasonic regeneration is set forth based on the ultrasonic theory as well as the mass transfer model in solid-gas and liquid-gas system. The recent studies related to ultrasonic dehydration are extensively reviewed, which is of significant reference to the study of desiccant regeneration assisted by power ultrasound. In addition, this work gives the basic ideas of ultrasonic dehydrator for solid/liquid-desiccant regeneration, which will promote the development of relevant equipments. Finally, some unexplored issues on this topic are addressed, including insight into the effects of ultrasonic on the regeneration, drying kinetics model for ultrasonic regeneration and the challenges possibly faced for the ultrasonic transducer development.

Suggested Citation

  • Yao, Ye, 2010. "Using power ultrasound for the regeneration of dehumidizers in desiccant air-conditioning systems: A review of prospective studies and unexplored issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1860-1873, September.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:7:p:1860-1873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00104-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, L.Z., 2006. "Energy performance of independent air dehumidification systems with energy recovery measures," Energy, Elsevier, vol. 31(8), pages 1228-1242.
    2. Techajunta, S & Chirarattananon, S & Exell, R.H.B, 1999. "Experiments in a solar simulator on solid desiccant regeneration and air dehumidification for air conditioning in a tropical humid climate," Renewable Energy, Elsevier, vol. 17(4), pages 549-568.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misha, S. & Mat, S. & Ruslan, M.H. & Sopian, K., 2012. "Review of solid/liquid desiccant in the drying applications and its regeneration methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4686-4707.
    2. Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
    3. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
    4. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    5. Yao, Ye & Yang, Kun & Liu, Shiqing, 2014. "Study on the performance of silica gel dehumidification system with ultrasonic-assisted regeneration," Energy, Elsevier, vol. 66(C), pages 799-809.
    6. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    7. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Ranjbaran, M. & Zare, D., 2013. "Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans," Energy, Elsevier, vol. 59(C), pages 484-493.
    9. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Hao & Lu, Lin & Luo, Yimo & Qi, Ronghui, 2016. "Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification," Energy, Elsevier, vol. 101(C), pages 229-238.
    2. De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
    3. Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2014. "Development of temperature and humidity independent control (THIC) air-conditioning systems in China—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 793-803.
    4. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    5. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    6. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    7. Ruivo, Celestino R. & Goldsworthy, Mark & Intini, Manuel, 2014. "Interpolation methods to predict the influence of inlet airflow states on desiccant wheel performance at low regeneration temperature," Energy, Elsevier, vol. 68(C), pages 765-772.
    8. Açıkkalp, Emin & Caliskan, Hakan & Hong, Hiki & Piao, Hongjie & Seung, Dohyun, 2022. "Extended exergy analysis of a photovoltaic-thermal (PVT) module based desiccant air cooling system for buildings," Applied Energy, Elsevier, vol. 323(C).
    9. Yang, C.M. & Chen, C.C. & Chen, S.L., 2013. "Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger," Energy, Elsevier, vol. 59(C), pages 467-477.
    10. Li, Guo-Pei & Zhang, Li-Zhi, 2016. "Investigation of a solar energy driven and hollow fiber membrane-based humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 177(C), pages 393-408.
    11. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
    12. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
    13. Liu, Di & Zhao, Fu-Yun & Tang, Guang-Fa, 2010. "Active low-grade energy recovery potential for building energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2736-2747, December.
    14. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    15. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    16. Kabeel, A.E., 2009. "Adsorption–desorption operations of multilayer desiccant packed bed for dehumidification applications," Renewable Energy, Elsevier, vol. 34(1), pages 255-265.
    17. Singh, Ashutosh & Kumar, Sunil & Dev, Rahul, 2019. "Studies on cocopeat, sawdust and dried cow dung as desiccant for evaporative cooling system," Renewable Energy, Elsevier, vol. 142(C), pages 295-303.
    18. Pramuang, Surajitr & Exell, R.H.B., 2007. "The regeneration of silica gel desiccant by air from a solar heater with a compound parabolic concentrator," Renewable Energy, Elsevier, vol. 32(1), pages 173-182.
    19. Mardiana, A. & Riffat, S.B., 2013. "Review on physical and performance parameters of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 174-190.
    20. Seungho Choi & Sangyoung Park & Junhee Hong & Jehyuk Won, 2023. "A Design and Validation of 400 W PV Emulator Using Simple Equivalent Circuit for PV Power System Test," Energies, MDPI, vol. 16(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:7:p:1860-1873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.